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Straightening Polygonal Arcs and
Convexifying Polygonal Cycles

Robert Connelly* Erik D. Demainef Giinter Rote!
October 6, 2000

Abstract

Consider a planar linkage, consisting of disjoint polygonal arcs and cycles of rigid
bars joined at incident endpoints (polygonal chains), with the property that no cycle
surrounds another arc or cycle. We prove that the linkage can be continuously moved
so that the arcs become straight, the cycles become convex, and no bars cross while
preserving the bar lengths. Furthermore, our motion is piecewise-differentiable, does
not decrease the distance between any pair of vertices, and preserves any symmetry
present in the initial configuration. In particular, this result settles the well-studied
carpenter’s rule conjecture.

1 Introduction

Consider a finite embedded polygonal arc in the plane (by an arc we mean a homeomorphic
image of the closed interval [0, 1]). Such a polygonal arc is often called an open polygonal
chain. It has been an outstanding question as to whether it is possible to continuously
move a polygonal arc in such a way that each edge remains a fixed length, there are no
self-intersections during the motion, and at the end of the motion the arc lies on a straight
line. This has come to be known as the carpenter’s rule problem. A related question is
whether it is possible to continuously move a polygonal simple closed curve in the plane,
often called a closed polygonal chain or polygon, again without creating self-intersections or
changing the length of the edges, so that it ends up a convex closed curve. We solve both
problems here by showing that in both cases there is such a motion.

Physically, we think of a polygonal arc as a linkage or framework with hinges at its
vertices, and rigid bars at its edges. The hinges can be folded as desired, but the bars
must maintain their length and cannot cross. Motions of such linkages have been studied in
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Figure 1: Convexifying a polygon that comes from doubling each edge in a locked tree.
Snapshots are zoomed different amounts to improve visibility; each edge stays the same
length throughout the motion. See http://daisy.uwaterloo.ca/~eddemain/linkage for
more animations.

discrete and computational geometry [BDD199, Erd35, Grii95, LW95, Nag39, O’R98, Sal73,
Tou99, Weg93, Weg96, Whi92b], in knot theory [CJ98, Mil94], and in molecular biology and
polymer physics [FK97, MOS90, McM79, Mil94, SW88, SG72, Whi83]. Applications of this
field include robotics, wire bending, hydraulic tube folding, and the study of macromolecule
folding [O’R98, Tou99].

We say an arc is straightened by a motion if at the end of the motion it lies on a straight
line. We say a polygonal simple closed curve (or cycle) is convezified by a motion if at the
end of the motion it is a convex closed curve. All motions must be proper in the sense that
no self-intersections are created, and each edge length is kept fixed. It is easy to see that
if any cycle can be convexified by a motion, then any arc can be straightened by a motion:
simply extend each arc to a cycle and convexify it. It is then easy to straighten the portion
of the cycle that is the original arc.

It seems intuitively easy to straighten an entangled chain: just grab the ends and pull
them apart. Similarly, a cycle might be opened by blowing air into it until it expands. But
these methods have the difficulty that they may introduce singularities, where the arc or
cycle may intersect itself. Our approach is to use an expansive motion in which all distances
between two points increase. We also show that the area of a polygon increases in such an
expansive motion.

We consider the more general situation, which we call an arc-and-cycle set A, consisting
of a finite number of polygonal arcs and polygonal simple closed curves in the plane, with
none of the arcs or cycles intersecting each other or having self-intersections. We say that
A is in an outer-convex configuration if each component of A that is not contained in any
cycle of A is either straight (when it is an arc) or convex (when it is a cycle).

We say that a motion of an arc-and-cycle set A is expansive if for every pair of vertices
of A the distance increases or stays the same during the motion. We say that the motion is
strictly erpansive if in addition, for those vertices not on a straight subarc in a component
of A and not on or in a common convex cycle of A, the distance between them increases
strictly. We say that A is separated, if there is a line L in the plane such that L is disjoint
from A and at least one component of A lies on each side of L.

Our main result is the following.

Theorem 1 FEvery arc-and-cycle set has a piecewise-differentiable proper motion to an outer-
convex configuration. Moreover, the motion is strictly expansive until the arc-and-cycle set
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1S separated.

We can also insist that the motion be strictly expansive during the entire motion. The
definition of this motion is actually even simpler than the one we use for Theorem 1, but
unfortunately the proof is a great deal more complex. Taking pity on the reader, we have
placed the proof of this extension in the appendix. Note that when there is just one com-
ponent in the arc-and-cycle set, there is no difference between Theorem 1 and the extension
in the appendix.

In contrast to this result, in dimension three there are arcs that cannot be straightened
and polygons that cannot be convexified [BDD99, CJ98]. In four and higher dimensions,
no arcs, cycles, or trees can be locked, i.e., all arcs, cycles, or trees can be straightened
or convexified, respectively. This is true because there are enough degrees of freedom and
one can easily avoid any impending self-intersection by “moving around” it. An explicit
unlocking algorithm for arcs and cycles in four dimensions was given in [CO99].

In the plane, there are examples of trees embedded in the plane that are locked in the
sense that they cannot be properly moved so that the vertices lie nearly on a line [BDD*98].
In other words, there are two embeddings of the tree such that there is no proper motion from
one configuration to the other. The important difference between trees and arc-and-cycle
sets is that arc-and-cycle sets have maximum degree two.

Arcs and Cycles Trees
2-D | Not lockable (this paper) | Lockable [BDD*98|
3-D | Lockable [BDD*99, CJ98] Lockable
4-D* Not lockable [CO99] Not lockable

Table 1: Summary of what types of linkages can be locked.

Whether every arc in the plane can be straightened, and whether every polygon in the
plane can be convexified, have been outstanding open questions until now. The problems
are natural, so they have arisen independently in a variety of fields, including topology,
pattern recognition, and discrete geometry. We are probably not aware of all contexts in
which the problem has appeared. To our knowledge, the first person to pose the problem
of convexifying cycles was Stephen Schanuel. George Bergman learned of the problem from
Schanuel during Bergman’s visit to the State University of New York at Buffalo in the
early 1970’s, and suggested the simpler question of straightening arcs. As a consequence
of this line of interest, the problems are included in Kirby’s Problems in Low-Dimensional
Topology [Kir97, Problem 5.18].

During the period 1986-1989, Ulf Grenander and the members of the Pattern Theory
Group at Brown University explored various problems involving the probabilistic structure
when generators (e.g., points and line segments) were transformed by diffeomorphisms (e.g.,
Euclidean transformations) subject to global constraints (e.g., avoiding intersections). For
the purposes of Bayesian image understanding, they were interested in whether the process
was ergodic, i.e., every configuration could be reached from any other. In particular, they
proved this for polygonal cycles in which the roles of angles and lengths are reversed: angles
are fixed but lengths may vary [GCK91, Appendix D, pp. 108-128]. Grenander posed the
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problems considered here during a seminar at Indiana University in March 1987 [Gre87], and
probably also at earlier talks (according to personal communication with Allan Edmonds).

In the discrete and computational community, the problems were independently posed
by William Lenhart and Sue Whitesides in March 1991 and by Joseph Mitchell in December
1992 (according to personal communications with Sue Whitesides and Joseph Mitchell). Sue
Whitesides first posed this problem in a talk in 1991 [LW91]. In this community the problems
were first published in a technical report in 1993 [LW93] and in a journal in 1995 [LW95].

Solutions were already known for the special cases of monotone cycles [BDL199] and
star-shaped cycles [ELR198], and for certain types of “externally visible” arcs [BDST99].

A fairly large group of people, mentioned in the acknowledgments, was involved in trying
to construct and prove or disprove locked arcs and cycles, at various times over the past few
years. Typically, someone in the group would distribute an example that s/he constructed
or was given by a colleague. We would try various motions that did not work, and we would
often try proving that the example was locked because it appeared so! For some examples,
it took several months before we found an unlocking motion. The main difficulty was that
“simple” motions that change a few vertex angles at once, while easiest to visualize, seemed to
be insufficient for unlocking complex examples. Amazingly, it also seemed that nevertheless
there was always a global unlocking motion, and furthermore it was felt that there was a
driving principle permitting “blowing up” of the linkage. This notion was formalized by
the third author with the idea that perhaps an arc could be straightened via an expansive
motion.

The tools that are applied here for the first time come from the theory of mechanisms and
rigid frameworks. Arcs and cycles can be regarded as frameworks. See [AR78, AR79, Con80,
Con82, Con93, CW96, CW93, CW82, CW94, GSS93, RW81, Whi84a, Whi84b, Whi87,
Whi88, Whi92a] for relevant information about this theory.

Our approach is to prove that for any configuration there is an infinitesimal motion that
increases all distances. Because of the nature of the arc-and-cycle set, this implies that
there is a motion that works at least for a small expansive perturbation. We then combine
these local motions into one complete motion. These notions are described in the rest of
this paper. Section 3 proves the existence of infinitesimal motions using the nonexistence of
certain stresses, a notion dual to infinitesimal motions for the underlying framework. The
analysis of these stresses uses a lifting theorem from the theory of rigidity that was known to
James Clerk Maxwell and Luigi Cremona [CW82, CW93, Whi82] in the nineteenth century.
Section 4 shows how to maneuver through the space of local motions to find a global motion
with the desired properties.

A short version of this paper was presented at the 41st Annual Symposium on Foundations
of Computer Science in November 2000 [CDRO00].

2 Basics

A linkage or bar framework G(p) is a finite graph G = (V, E) without loops or multiple
edges, together with a corresponding configuration p = (p1, ..., pn) of n points in the plane,
where p; corresponds to vertex ¢ € V. (For convenience we assume V = {1,...,n}.) The
edges of G constitute the set E and correspond to the bars in the framework, i.e., the links

4
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Figure 2: Illustration of Lemma 1.

of a linkage. Arc-and-cycle sets are a particular kind of bar framework in which the graph
(G is a disjoint union of paths and cycles.

A flex or motion of G(p) is a set of continuous functions p(t) = (p1(%), - - ., pPn(t)), defined
for 0 <t < 1, such that p(0) = p and ||p;(t) — p;(¢)|| is constant for each {i,j} € E. We
are interested in finding a motion of the arc-and-cycle set with the additional property that
it is strictly expansive.

2.1 Expansiveness

We begin with some basic properties of expansive motions. Namely, we will show that if
a motion expands the distance between all pairs of vertices, it also expands the distance
between all pairs of points on the arc-and-cycle framework. One consequence of this is a key
reason why we use expansive motions: they automatically avoid self-intersection.

Lemma 1 In the plane, suppose that a point c is contained in the closed triangle formed by
three points p1, P2, P3, and another point qs s chosen so that it is farther from p; and po
than ps, i.e.,

lds = p2ll > [Ips — P2l and llas — p1ll > |Ips — pu |- (1)

Then qs is also farther from c than ps, i.e., ||as — p1|| > ||ps — p1l|, with equality precisely
if both inequalities of (1) are equalities.

Proof: Refer to Figure 2. The circular disk Cj centered at ¢ and of radius ||ps — c|| is
contained in the union of the circular disks C; centered at p; and of radius ||ps — p1]|, and
C5 centered at py and of radius ||ps — pz||. This implies the result, because q3 must be
outside of C; and Cy. See also [Con82| for a proof in terms of tensegrities. O
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Figure 3: (a) Original arc-and-cycle framework. (b) With straight vertices removed. (c)
With convex cycles rigidified. (d) With components nested within convex cycles removed.

Corollary 1 Any expansive motion of an arc-and-cycle set only increases the distance be-
tween two points on the arc-and-cycle set (each either a vertex or on a bar). In particular,
there can be no self-intersections.

Proof: First consider the distance between a vertex ps and a point ¢ on a segment p;ps of
the arc-and-cycle set. This distance can only increase by Lemma 1. Now suppose we have
another point ¢’ on a segment psp, of the arc-and-cycle set. We know that p3 and p4 can
only get farther from c. Hence, ¢ can only get farther from c'. O

2.2 The Framework G4(p)

Given an arc-and-cycle set A that we would like to move to an outer-convex configuration, we
make four modifications to A. The first three modifications simplify the problem by removing
a few special cases that are easy to deal with; see Figure 3. The fourth modification will
bring the problem of finding a strictly expansive motion into the area of tensegrity theory.
In the end we will have defined a new framework, G 4(p), which we will use throughout the
rest of the proof.

Modification 1: Remove straight vertices. First we show that our arc-and-cycle set
can be assumed to have no straight vertices, i.e., vertices with angle w. Furthermore, if during
an expansive motion of the arc-and-cycle set we find that a vertex becomes straight, we can
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proceed by induction. For once the arc-and-cycle set has a straight subarc of more than
one bar, we can coalesce this subarc into a single bar, thereby preserving the straightness
of the subarc throughout the motion once it becomes straight. This reduces the number of
bars and the number of vertices in the framework. By induction, this reduced framework
has a motion according to Theorem 1, and such a motion extends directly to the original
framework. The resulting motion is also strictly expansive by Lemma 1.

Modification 2: Rigidify convex polygons. Once a cycle becomes convex, we no longer
have to expand it, and indeed we can hold it rigid from that point on. Of course, we allow
a convex cycle to translate or rotate in the plane, but its vertex angles are not allowed to
change. This can be directly modeled in the bar framework by introducing bars in addition
to the arc-and-set cycle. Specifically, we add the edges of a triangulation of a cycle once that
cycle becomes convex.

Modification 3: Remove components nested within convex cycles. The previous
modification did not address the fact that components can be nested within cycles. Once
a cycle becomes convex, not only can we rigidify it, but we can also rigidify any nested
components, and treat them as moving in synchrony with the convex cycle. We do this
by removing from the framework any components nested within a convex cycle. Assuming
there were some nested components to deal with, this results in a framework with fewer
vertices and fewer bars. By induction, this reduced framework has a motion according to
Theorem 1. This motion can be extended to apply to the original framework by defining
nested components to follow the rigid motion of the containing convex cycle. By the following
consequence of Lemma 1, the resulting motion is also strictly expansive.

Lemma 2 FEztending a motion to apply to components nested within convez cycles preserves
strict expansiveness.

Proof: Consider some vertex ¢ on a component inside some convex cycle, and a vertex
p3 outside the cycle. We first consider the case that ps does not lie inside another convex
cycle. Extend the ray from psc beyond c, and let p;ps the edge through which this ray exits
the cycle. Thus, c is in the triangle p1, p2, P3, so Lemma 1 applies, and the distance psc
increases.

For two points ¢; and cy in two different cycles C; and Cy, we extend the ray cicy to
identify the edge p;p2 on Cy where the ray leaves Cs. ;From the first part of the proof we
conclude that c;p; and c;p; increase, and by Lemma 1, the distance c;cy increases. O

Modification 4: Add struts. In order to model the expansive property we need, we
apply the theory of tensegrity frameworks, in which frameworks can consist of both bars
and “struts.” In contrast to a bar which must stay the same length throughout a motion, a
strut is permitted to increase in length, or stay the same length. Specifically, we add a strut
between nearly every pair of vertices in the framework. The exceptions are those vertices
already connected by a bar, and vertices on a common convex cycle, because in both cases
we cannot hope to strictly increase the distance.

7
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Final framework: G4(p). The above modifications define a tensegrity (bar-and-strut)
framework G 4(p) in terms of the arc-and-cycle set A. Specifically, assume that A has no
straight vertices or components nested within convex components. We call such an arc-and-
cycle set reduced. We define the set B of bars by starting with the set of bars from the
arc-and-cycle set, and adding a triangulation of every convex cycle. The set S of struts
consists of all vertex pairs which are not in B and which do not belong to the same convex
cycle. See Figure 4 for an example.

A

Figure 4: Construction of the frameworks G 4(p) and G';(p’). Solid lines denote bars, and
dashed lines denote struts.

Our goal in the proof of Theorem 1 is to find a motion such that all bars maintain their
length, while all struts strictly increase in length, in other words, a motion of G 4(p) that is
strict on all struts.

Thus, we want to find a motion p(¢) for 0 < ¢ < 1 such that p(0) = p and

#lpi(t) —pi()l| =0 for {i,j} € B,
#lp; () — i)l > 0 for {i,j} € S.

Differentiating the squared distances ||p;(t) — pi(?)||* = (p;(t) — pi(t)) - (p;(t) — pi(t)) and
denoting the velocity vectors by v;(t) := %p,(t), we obtain the following equivalent condi-

tions.
(v(t) = vi(t)) - (p;(t) — pi(t)) =0 for {i,j} € B,
(v(t) = vi(t)) - (p;(t) — pi(t)) >0 for {i,j} € S.

Intuitively, the first-order change in the distance between vertex ¢ and j is modeled by
projecting the velocity vectors onto the line segment between the two vertices; see Figure 5.

2.3 Infinitesimal Motions

A strict infinitesimal motion or strict infinitesimal flex v = (vy,...,v,) specifies the first
derivative of a strictly expansive motion at time 0. In other words, it assigns a velocity
vector v; to each vertex ¢ so that it preserves the length of the bars to the first order, and
strictly increases the length of struts to the first order. More precisely, a strict infinitesimal
motion must satisfy

(Vj — Vi) . (pj — pz) =0 for {Z,j} € B, (2)
(v; —vi) - (pj —pi) > 0 for {i,j} € 5,
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Di

Ui
H_J
vi + (pj — pi) v; - (P — Pi)
Figure 5: The dot product (v;(t) — v;(t)) - (p;(t) — pi(t)) is zero if the distance between p;

and p; stays the same to the first order, positive if the distance increases, and negative if
the distance decreases.

where p; denotes the initial position of vertex 1.

In the next section, we prove that such a strict infinitesimal motion always exists. In
Section 4 we show how this leads to motions for small amounts of time. These motions are
then shown to continue globally until the configuration reaches an outer-convex configuration.

3 Local Motion

Recall that an arc-and-cycle set is called reduced if adjacent collinear bars have been coa-
lesced, and components nested within cycles have been removed. In this section, we prove
the following:

Theorem 2 For any reduced arc-and-cycle set A there is an infinitesimal flex v of the
corresponding bar-and-strut framework G 4(p) satisfying (2).

3.1 Equilibrium Stresses

The equations and inequalities in (2) form a linear feasibility problem that is common for
tensegrity frameworks. But in order to solve this problem it is helpful to restate it in terms
of the dual problem. This leads to the study of equilibrium stresses in tensegrity frameworks.

A stress in a framework G(p) is an assignment of a scalar w; ; = w;; to each edge {i,j}
of G (a bar or strut). The whole stress is denoted by w = (...,w;,...). We say that the
stress w is an equilibrium stress if for each vertex ¢ of G the following equilibrium equation
holds:

Z wz‘j(Pj - Pz‘) =0 (3)

j:{i,j}eBUS

We say that the stress w is proper if furthermore for all struts {7,j}, w;; > 0. There is no
sign condition for bars. (Terminology and sign conditions are not uniform in the literature:
An equilibrium stress is also called a self-stress or plainly a stress; all stresses that we deal
with are equilibrium stresses.)

Now we state the duality between equilibrium stresses and infinitesimal motions.
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Theorem 3 The framework G 4(p) corresponding to a reduced arc-and-cycle set A has only
the zero proper equilibrium stress.

Lemma 3 Theorem 3 implies Theorem 2.

This equivalence is a standard technique in the theory of rigidity. See [CW96, Theorem
2.3.2] for a similar statement. For completeness, we give a brief proof here based on linear
programming duality:

Proof: By rescaling the velocities in (2), we obtain the following equivalent linear feasibility
problem:

minimize 0-v
subject to (v; —v;) - (p; — p;) =0 for {i,j} € B, (4)
(vi=vi)-(pj —pi) > 1for {i,j} €5,
Theorem 2 claims that this linear program has a feasible solution, that is, an optimal solution

of value 0. By linear-programming duality (the Farkas lemma), it suffices to show that the
dual linear program

maximize Y ico Wi

subject to Z wij(Ppj —pi) =0 forieV,

j:{i,j}eBUS (5)
Wij = Wy, for {l,]} e BU S,
Wij = 0 for {’L,j} €S,

has an optimal solution of value 0. This linear program exactly specifies the constraints of a
proper equilibrium stress. Thus, it suffices to show that every proper equilibrium stress has
w;; = 0 for all {4,5} € S. In particular, it suffices to show that every proper equilibrium
stress is identically zero. O

3.2 Planarization

To prove that only the zero equilibrium stress exists (i.e., to prove Theorem 3), we use
another tool in rigidity called the Maxwell-Cremona theorem. Before we can apply this tool,
we need to transform the framework G 4(p) into a planar framework G’;(p’). (Refer to the
framework on the right of Figure 4.) We introduce new vertices at all intersection points
between edges of G4(p), and subdivide the bars and struts accordingly. Any multiple edges
resulting from this operation are merged. We define the resulting framework G’,(p’) to have
bars precisely covering the bars of G4(p). All the other edges of G',(p’) are struts. G',(p’)
is planar in the sense that two edges (bars or struts) intersect only at a common endpoint.

Despite the added points in this modification, the planar framework G';(p’) is equivalent
to the original framework G 4(p) in the sense of equilibrium stresses. Indeed, the following
stronger statement holds. We call a stress outer-zero if the only edges that carry a nonzero
stress are edges of convex cycles and edges interior to convex cycles, and we call it outer-
nonzero otherwise.

10
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Lemma 4 If Gao(p) has a nonzero proper equilibrium stress w, then G',(p') has an outer-
nonzero proper equilibrium stress w'.

Proof: During the modifications to G4(p) that made G';(p’), we modify w to make w' as
follows. When we subdivide an edge {i, j} with stress w; ;, each edge of the subdivision {k, [}
gets the stress w; |[pi — pjll/llpk — |- (The ratio of lengths is necessary because w;; is a
weight, and the actual force comes from scaling by the length of the edge {i,j}; see (3).)
When merging several edges, we add the corresponding stresses. It is easy to verify that
the resulting stress is proper and in equilibrium. We only have to check that positive and
negative stresses do not completely cancel during the merging process, and that the stress
is furthermore outer-nonzero.

First we prove that some strut {i,j} of G4(p) carries a positive stress. In other words,
G 4(p) cannot be stressed only on its bars; in particular, a framework consisting exclusively
of arcs, cycles, and triangulated convex cycles cannot carry a nonzero stress. This follows
because, in any such bar framework, there is a degree-two vertex v; in particular, every
triangulated convex cycle has a degree-two vertex (an ear). Because the framework is re-
duced, the two bars incident to v are non-parallel, so these two bars cannot carry stress
while satisfying equilibrium at v. Removing them and proceeding inductively with the rest
of the framework, we conclude that the stress is zero on the whole bar framework. Hence, the
bars alone cannot carry a nonzero stress, so some strut {i,j} € G 4(p) must have a nonzero
stress.

The conditions of Theorem 2 enforce that no angles at vertices of the arc-and-cycle set
are m or 0: an angle of 7 would create a straight subarc of two bars (contradicting the
assumption that framework is reduced), and an angle of 0 would violate simplicity. Thus,
no strut of G4(p) is completely covered by bars. Therefore, for the strut {7, 5} of Ga(p)
that carries a positive stress, some portion of it in G'4(p’) will also have a positive stress,
because a positive stress can only be canceled by a stress on a bar. In particular, w’ must
be nonzero.

Furthermore, if the strut {7, } is exterior to all convex cycles in A, we have that &'
is outer-nonzero. Now suppose that {i,j} is partially interior to convex cycles in A (by
construction, the strut cannot be entirely within convex cycles of A). Then there is a
portion of {7, } with the property that it is incident to a convex cycle and exterior to all
convex cycles in A. This portion must be uncovered by bars, because no bar in A has this
property, and the only additional bars in G 4(p) are interior to convex cycles. Hence, the
corresponding strut in G',(p) carries a positive stress, so w’ is outer-nonzero in all cases. O

Thus, to prove that the original framework G 4(p) has only the zero proper equilibrium
stress, it suffices to prove that the planar framework G’;(p’) has only outer-zero proper
equilibrium stresses.

3.3 Maxwell-Cremona Theorem

To prove that only outer-zero equilibrium stresses exist, we employ the Maxwell-Cremona
correspondence between equilibrium stresses in planar frameworks and three-dimensional
polyhedral graphs that project onto these frameworks. More precisely, a polyhedral graph or
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polyhedral terrain ' comes from lifting a planar framework into three dimensions—that is,
assigning a z coordinate (positive or negative) to each vertex in the framework—such that
each face bounded by edges of the framework (including the exterior face) remains planar.
The polyhedral surface I' is then the graph of a piecewise-linear continuous function of two
variables that is linear on the faces determined by G';(p’).

Consider an edge {7, j} in a planar framework, separating faces F' and F'. Let z = a-p+b
and z = a’' - p + V' be the two linear functions specifying I' on F' and F’, respectively.
A straightforward calculation reveals that the vector a’ — a must be perpendicular to the

edge {i,7}:
a'—a=uwje;; (6)

where eifj is a vector of the same length as the vector p; — p;, perpendicular to it, and
pointing from F' towards F'. We call the edge {i,j} a valley if w;; > 0, a mountain if
wi; < 0, and flat if w; ; = 0. Note that the two sides of a valley do not necessary “go up”
in z (and so a valley might not carry water); however, as one crosses a valley, the slope gets
steeper. A similar remark applies to mountains.

Theorem 4 (Maxwell-Cremona Theorem) (i) For every polyhedral graph T that projects
to a planar bar framework G(p), the stress w defined by (6) forms an equilibrium stress on
G(p).

(i1) For every proper equilibrium stress w in a planar framework G(p), G(p) can be lifted
to a polyhedral graph T' such that (6) holds for all edges. In particular, edges with positive
stress lift to valleys, edges with negative stress lift to mountains, and edges with no stress lift
to flat edges. Furthermore, I' is unique up to addition of affine-linear functions.

A proof of this result can be found in [CW94, HK92, Whi82], which follows the idea
suggested above. Another point of view [Glu74] is that the stresses are a scaling of the
angular momentum vectors of the function that lifts from the plane to the graph.

3.4 Main Argument

Note in particular that the zero equilibrium stress corresponds to the trivial polyhedral graph
in which all faces are coplanar (i.e., defined by the same linear function). More generally,
an outer-zero equilibrium stress corresponds to a polyhedral graph that is flat on every edge
exterior to all convex cycles. Therefore, to prove that only outer-zero equilibrium stresses
exist, and hence prove Theorem 3, it suffices to show that only such polyhedral graphs exist.
More precisely, consider any polyhedral graph I' that projects to the planar framework
G'4(p’) with the property that all struts are lifted to valleys or flat edges (because they can
only carry nonnegative stress), and bars are lifted to valleys, mountains, or flat edges. We
need to show that nonflat edges can only appear within or on the boundary of convex cycles.
Because we may add an arbitrary affine-linear function, we may conveniently assume that
the exterior face of I' is on the zy-plane. Thus the problem is to show that I' does not lift
off the zy-plane any vertex of G'y(p’) except possibly vertices interior to convex cycles of A.
One simple fact that we will need is the following:

12
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Lemma 5 Any mountain in the polyhedral graph ' projects to a bar in the planar framework
G'(P').

Proof: A strut can only carry nonnegative stress, so by Theorem 4 it can only lift to a
valley or a flat edge. a

We now come to the heart of our proof, the proof of Theorem 5. It is here that we
finally show that the stress must be outer-zero, by looking at the maximum of any Maxwell-
Cremona lift. Specifically, let M denote the region in the xy-plane where the z value attains
its maximum in I'. M is a nonempty union of faces, edges, and vertices of the planar
framework G';(p’). The following statement immediately implies Theorem 3 and hence
Theorem 2:

Theorem 5 The set M includes every face of the framework G'y(p') that is exterior to all
convex cycles.

Consider the boundary 0M, which may be empty if M fills the whole plane. Because
points in M lift to maximum height, all edges of M must lift to mountains. Thus by
Lemma 5, all edges of OM must be bars in the framework. Hence, M consists of disjoint
vertices, paths of edges, and complete cycles of the arc-and-cycle set, together with a subset of
the triangulations of the convex components. Figure 6 shows typical cases of all possibilities.
We will show that the only case in Figure 6 that can actually occur is (1), in which M
includes a convex cycle and M includes the local exterior of that cycle.

Our main technique for arriving at a contradiction in all cases except (1) is that of slicing
the polyhedral graph. Consider a plane II that is parallel to the zy-plane and just below
the maximum z coordinate of I'. (By “just below” we mean that II is above all vertices of I"
not at the maximum z coordinate.) Now take the intersection of IT with the surface I', and
project this intersection to the zy-plane. The resulting set X is shown in Figure 7 for the
various cases.

The set X captures several properties of the polyhedral graph I'. First note that because
X is the boundary of a small neighborhood of M in the plane, it is a disjoint union of
cycles. It is also polygonal. Each edge of X corresponds to a face of I', and each vertex
of X corresponds to an edge of I'. The angle at a vertex of X (at the side interior to M)
determines the type of edge corresponding to that vertex: the angle is 7 (straight) if the
edge is flat, less than 7 (convex) if the edge is a mountain, and more than 7 (reflex) if the
edge is a valley.

The basic idea is to show that X has “many” convex angles, and apply Lemma 5 to
prove that the framework has “too many” bars. The key fact underlying the proof is that
the arc-and-cycle set has maximum bar-degree two: every vertex is incident to at most two
bars. In the planar framework G’,(p’), only vertices v of convex cycles can have bar-degrees
greater than two, and these bars are contained in a convex wedge from v.

Our proof deals with all cases at once. To illustrate the essence of the proof, we first
describe it for the special case (a) in which one component of OM is a single vertex v
that does not belong to a convex cycle. In this case, one component of X is a star-shaped
polygonal cycle P around v. Every polygon P has at least three convex vertices. (Because
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T { i
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Figure 6: Hypothetical connected components of OM and their relation to M. Solid lines are
edges of 0M; white regions are absent from M ; and shaded regions are present in M. (a) An
isolated vertex. (b) A straight subarc. (c¢) A nonstraight subarc. (d) A nonconvex cycle.
(e) A nonconvex cycle and its local interior. (f) A nonconvex cycle and its local exterior.
(g—k) Various situations with a convex cycle. (1) The only possible case: A convex cycle and
its local exterior.

the turn angles of a polygon sum to 27, and the maximum turn angle of a vertex is < 7, every
polygon has at least three vertices with positive turn angles.) These three convex vertices
correspond to three mountains in I'; all incident to a common vertex v. By Lemma 5, there
are three bars incident to v, contradicting the maximum-degree-two property for vertices not
on convex cycles. Therefore, case (a) cannot exist.

The general reason that cases (a—k) cannot exist is the following:

Lemma 6 Let v be a vertex on the boundary of M, and let b, ..., by be the bars incident
to v in cyclic order. Consider a small disk D around v.

(i) If there is an angle of at least ™ at v between two consecutive bars, say b; and b1,
then the pie wedge P of D bounded by b; and b;11 belongs to M (see Figure 8).

(ii) If there are no bars or only one bar incident to v, i.e., k < 1, then the entire disk D
belongs to M. (This can be viewed as a special case of (i).)

Proof: (i) Because there are no bars in the pie wedge P, and hence no edges of OM in P,
P must be completely contained in or disjoint from M. Assume to the contrary that P is
disjoint from M. Then the intersection of the slice X with the pie wedge P is a star-shaped
polygonal arc around v starting from a point on b; and ending at a point on b; ;. By the
properties of X, convex vertices on this arc correspond to mountains emanating from v, and

14



£’15:01
£’15:02
£°15:03
£'15:04
£715:05
£715:06
£’15:07

£°15:08

(8) (h) (i) G (k) M
Figure 7: Slicing the polyhedral graph I' just below the maximum z coordinate, in each case

corresponding to those in Figure 6. Thick lines denote the slice intersection X, and thick
dotted lines denote the corresponding edges in the polyhedral graph I'.

b3

Figure 8: (Left) Illustration of Lemma 6: solid lines are bars, dotted lines are struts, and
the shaded pie wedge P must be contained in M. (Right) Illustration of the proof; the thick
lines form the portion of X inside P, and the symbols ¢ and r denote convex and reflex
vertices, respectively.

reflex vertices correspond to valleys emanating from v. Because the angle of the pie wedge
P is at least m, the arc must have at least one convex vertex in P. (The turn angles along
the arc must sum to a positive number, so some vertex must have a positive turn angle.) By
Lemma 5, there must be a bar in P, a contradiction.

(i) If £ =1, the bars b; and b;,; coincide, and the same proof applies. The star-shaped
polygonal arc becomes a star-shaped polygonal cycle, which must have at least two convex
vertices not on b; = b; 1. If £ = 0, X also has a star-shaped polygonal cycle around v, which
must have at least three convex vertices, yet v has no incident bars. O
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Note that this lemma applies to every vertex in our planar framework G’,(p’), because
every vertex either has bar-degree at most two or is a vertex of a convex cycle, and in either
case there is a nonconvex angle between two consecutive bars.

One can immediately verify that the examples shown in Figure 7(a—k) contradict Lemma 6.
For example, applying the lemma to any vertex of M shows that M should contain a pos-
itive two-dimensional area incident to that vertex. This immediately rules out cases (a—d),

(8), (i), and (k).
A general proof is also easy with Lemma 6 in hand:

Proof (Theorem 5): Consider first a degree-0 or degree-1 vertex v in M. (Such a
point would appear when M has a component that is an isolated point or an arc of bars.)
Because Lemma 6 applies to every vertex of the framework, we know that some positive
two-dimensional area in the vicinity of v belongs to M, contradicting that v has degree 0 or
1 in OM. This rules out cases (a—) and (j—k).

It follows that OM is a union of cycles. A component of M can be of two kinds:

(i) If it is formed from the edges of a convex cycle and its triangulation, Lemma 6 ap-
plies to any vertex in it, and we conclude that M contains the face of the framework
immediately exterior to the cycle. This rules out cases (gi).

(ii) If it consists of a complete nonconvex cycle, we can apply Lemma 6 to some convex
vertex and to some reflex vertex (they must both exist), and we conclude that M
contains both the face of the framework immediately interior and the face immediately
exterior to the cycle. This rules out cases (d—f).

In the end, the only faces of the framework that can be missing from M are those interior to
convex cycles (case (1)). This completes the proof of Theorem 5 and of Theorems 3 and 2.
O

4 Global Motion

In this section, we combine the infinitesimal motions into a global motion, thereby proving
Theorem 1, the main theorem. In Theorem 2 we have established the existence of some
direction of motion v. Now we select a unique vector v := f(p) for each configuration p as
the solution of a convex optimization problem (7-9). We then set up the differential equation

(0) = F(p(1)).

The solution of this differential equation moves the linkage to a configuration where an angle
between two bars becomes straight. At this point we merge the two bars and continue
with the reduced framework that has one vertex less. This procedure is iterated until the
framework is outer-convex and no further expansive motion is possible.

It is convenient for the proof of Theorem 1 to effectively pin an edge in the configuration.
Choose any edge, say {p1, p2}, that is a bar. During the motion we will arrange matters so
that this bar is stationary.
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We now go into the details of the proof. We use the following nonlinear minimization
problem to define a unique direction v for every configuration p of a reduced arc-and-cycle
set.

minimize Y [[vill2+ Y [(vi—v;)- (pi —p;) — Ip; —pill] (7)

i€V {ij}es
subject to  (v; —v;) - (Pj —pi) > |pj —pill, for{i,j} €S (8)
(vi—vi)-(pj—pi) = 0, for{i,j} € B 9)
vi=vy = 0 (10)

The restrictions (8) place a uniform constraint on the growth of the struts S: £}; > 1. Since
the system (2) is homogeneous, the system (8-9) is feasible for any choice of right-hand sides
in (8). This particular right-hand side has been chosen for convenience in the proof.

The objective function (7) includes the norm of v as a quadratic term, plus a barrier-type
penalty term that keeps the solution away from the boundary (8) of the feasible region. This
penalty term is necessary to achieve a smooth dependence of the solution on the data. Now,
because the objective function is strictly convex, and it goes to infinity if v increases to
infinity or approaches the boundary, there is a unique solution v =: f(p) for every p.

The function f(p) is defined on an open set U C R? that is characterized by the
conditions of Theorem 2: no angles are 0° or 180°, no vertex touches a bar, and at least one
cycle is nonconvex or at least one open arc is not straight.

4.1 Smoothness

We will show that f is differentiable in the domain U. This follows from the stability theory
of convex programming under equality constraints, as applied to parametric optimization
problems of the type

min{ g(p,z) : = € p) CR*, A(p)z = b(p) } (11)

where A(p) is an m X n matrix and b(p) is an m-vector. The objective function g, the domain
Q(p), and the linear constraints (A, b) depend on a parameter p that ranges over an open
region U C RF.

For such an optimization problem, the following lemma establishes the smooth depen-
dence of the solution vector on the data.

Lemma 7 Suppose that the following conditions are satisfied in the optimization problem (11).

(a) The objective function g(p,x) is twice continuously differentiable and strictly convex as
a function of x € Q(p), with a positive definite Hessian Hy, for every p € U.

(b) The domain Q(p) is an open set, for every p € U.
(¢) The rows of the constraint matriz A(p) are linearly independent, for every p € U.

(d) The gradient Vg of g with respect to x and the data A(p) and b(p) are continuously
differentiable in p, forp e U.
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(e) The optimum point x*(p) of the problem (11) ezists for every p € U (and is unique,
by (a)).

Then x*(p) is continuously differentiable in U.

Proof: The proof is based on the implicit function theorem and follows the standard lines
of the proof in this area, cf. [BS74, in particular Section 4] or [Fia76, Theorem 2.1] for
more general theorems where inequalities are also allowed. For the benefit of the reader,
we sketch the proof here. From (a) and (e) it follows that z* can be found as part of the
unique solution (z*, A) of the system of equations h(p,z,A) = 0 that represents the first-
order necessary optimality conditions. Here, A is a k-vector of Lagrange multipliers, and
h: U x R** — R+ is given by

The implicit function theorem guarantees the local existence of z(p) (and A(p)) as a solu-
tion of A(p,z(p),\(p)) = 0 in a neighborhood of z if the Jacobian J = 0h/0(z, ) is an
invertible matrix for every p € U. Moreover, differentiability is ensured if A is continuously
differentiable. The Jacobi matrix is given by

J:(?h(p,x,)\): H, AT .
oz, A) A 0

Differentiability of A follows from the assumptions; we only have to check that A is invertible.
Since H, is invertible by (a), we have

det J = det H, - det(—AHg_lAT).

By assumption (c), A has full row rank, and the matrix AH g LA™ is positive definite. There-
fore det J # 0. O

Lemma 8 f is differentiable on U.

Proof: The objective function is the sum of the quadratic function Y~ ||v;||?, which has
a positive definite (constant) Hessian, and additional convex terms, and therefore assump-
tion (a) of Lemma 7 holds. We use the inequalities (8) to define the feasible domain €. So
we only need to consider the linear constraints (9). All other conditions of Lemma 7 are
trivial to check except for the linear independence of the equations (9).

This linear independence is easy to see: we have to check whether the system (9) has a
solution for any choice of right-hand sides instead of 0. Even when we consider the set of
bars B that are augmented by the triangulation edges that were added in the modification
step 2 of section 2.2, There is always a vertex which is incident to at most two bars, and
moreover, these two bars cannot be parallel. The corresponding unknown vector v; appears
in two equations in which the scalar products with two vectors p; — p; and p; — p;, are taken;
as these vectors are not parallel, there is always a solution for v; regardless of the values of
the other variables. The case when node 7 is incident to one bar or to no bar is easy. O
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4.2 Solving the Differential Equation and Proving Theorem 1

Differentiability of f on U is sufficient to ensure that the initial-value problem

Sl = F(p(t), B(O) =0 (12)

has a (unique) mazimal solution p(t), 0 < t < T, that cannot be extended beyond some
positive bound 7" < oo; see for example [Wal96, Section II.XXI|. This means that one of
three cases occurs:

(a) p(t) exists for all ¢, i.e., T = oc.
(b) T is finite, and p(t) becomes unbounded as ¢t — T.
(c) T is finite, and p(t) approaches the boundary of U as t — 7.

The last case (c) is the case we want: at the boundary of U, some angle becomes straight,
and we can reduce the linkage.

Case (a) can be excluded very easily. By assumption, the bar-and-strut framework G 4(p)
has some strut {i,j} between two points in the same component of the bar framework; their
distance increases at least with rate 1, by (8), but it is bounded from above because 7 and j
are linked by a sequence of bars. It follows that the solution cannot exist indefinitely and 7°
must be finite.

If there is a line L that separates the components of the arc-and-cycle set A, this partitions
A into two nonempty sets, and each of these can be treated separately and recursively.
Unfortunately, the guarantee for the expansive property between different members of the
partition is lost. But for the purposes of proving Theorem 1 we may assume that there is
no such separation. Then the sum of the maximum diameters of each of the components of
A is a uniform a-priori bound on the diameter of A for all time. This eliminates case (b).

Thus we are left with case (c¢) only. We show that p(¢) converves as t — T'. Observe that
all pairwise distances of vertices p(¢) are monotonically increasing, and by condition (10)
p: and p, are fixed during the motion. Thus, all other vertices are determined up to
reflection, and the whole configuration is determined up to reflection. Thus p(f) — p
for some configuration p as ¢ — 7. The configuration p is on the boundary of U and thus
must have some vertex with a straight angle. Then we inductively continue with a simpler
linkage. This completes the proof of Theorem 1. O

In this proof, the easy exclusion of possibility (b), that the motion becomes unbounded,
depends crucially on the fact that the diameter of A is bounded, and the motion is stopped
as soon as there is a separating line. Boundedness is valid even without this precaution, as
is stated in the following lemma.

Lemma 9 (Boundedness Lemma) Let p(t) be the motion given by the differential equa-
tion (12), where v = f(p) is given as the solution of the optimization problem (7-9). Then
the motion of every vertex i is bounded:

Ipi(t) = pi(0)[| < /0 [vi()]l dt < Kp,s.p0(1),
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£20:01 where Kp s5,(t) is an explicit function of t that depends only on the combinatorial structure

£20:02 of the arc-and-cycle set (B and S) and on the initial configuration po.

£20:03 Note that the definition of v does not involves the pinning constraints (10). The lemma
£20:04 implies that it is not necessary to treat separated components separately. The proof of the
£20:05 lemma is complicated, and it is given in the appendix.

£20:06 4.3 Alternative Approaches

£20:07 There are many ways to select a local motion v among the feasible local motions whose
£20:08 existence is guaranteed by Theorem 2. We have chosen one possibility that is most convenient
£20:09 for the proof.

£20:10 As a possible alternative approach, we might consider a linear programming problem,
£20:11 with some arbitrary artificial linear objective function ¢, and some linear normalization
£20:12 condition to ensure boundedness, pinning down some bar (i,is) € B:

£20:13 minimize ). . C;-V;

£220:14 subject to  (v; —v;) - (p; — ps) =0 for {i,5} € B, (13)
£°20:15 (Vj — Vi) . (pj - pz) Z 0 for {Z,j} € S, (14)
£20:16 Ziev d,-v; =1, (15)
£20:17 vi, =V, =0, (16)
£20:18 We have given up strict expansiveness in (14), The set of vectors given by (13), (14), and
£20:19 (16) forms a polyhedral cone C. Theorem 2 guarantees that there are nonzero solutions.
£20:20 One can check that the pinning constraints (16) ensure that the cone is pointed. The idea
£20:21 is now to use an extreme ray of the cone C for the motion. A vector d can be found which
£20:22 ensures that the feasible set (13—16) is a bounded set. Any basic feasible solution of the linear
£20:23 program will correspond to an extreme ray of the cone C. It will have a few inequalities of
£20:24 (14) fulfilled with equality. The resulting framework obtained by inserting “artificial” bars
£20:25 corresponding to the nonbasic inequalities of (14), will have a unique vector of velocities v
£20:26 subject to the normalization constraint (15). This means that the framework is a mechanism,
£20:27 allowing one degree of freedom; as the mechanism follows this forced motion, all nonfixed
£20:28 distances will increase, at least for some time.

£120:29 So one follows the paradigm of parametric linear programming: The optimal basic feasible
£20:30 solution will continue to remain feasible as the coefficients p; in the constraints (14) change
£20:31 smoothly. At some point, one of these constraints will threaten to become violated: this is
£20:32 the time to make a pivot, exchanging one of the artificial bars for a new one which allows
£20:33 the motion to be continued.

£20:34 The above discussion has ignored several issues, such as possible degeneracy of the linear
£20:35 program. However, this approach might be more attractive from a conceptual, as well as a
£20:36 practical point of view.

£20:37 Recently, Streinu [Str00] has found a class of such mechanisms, so-called pseudo-triangulations.
£20:38 These structures have some nice properties; for example, they form a planar framework of
£20:39 bars. Streinu [Str00] has proved that a polygonal arc can be opened by a sequence of at
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most O(n?) motions, where each motion is given by the mechanism of a single pseudo-
triangulation.

Figure 9: An arc that is numerically difficult to unfold.

4.4 Comparison of Approaches

The approach based on mechanisms might avoid some of the numerical difficulties associ-
ated with solving the optimization problem (7-9). For example, consider a spiral n-bar arc
winding around a unit square in layers of thickness ¢ (Figure 9). In the solution of (8-9), a
rough estimate shows that the outermost vertex must move with a speed of at least ¢*~™", as
g€ — 0. On the other hand, the “natural” solution of unwinding the spiral one bar at a time
fits nicely into the setup of mechanisms and the parametric linear program approach.

Our proof has certain nonconstructive aspects: the direction v of movement is specified
implicitly as the solution of an optimization problem, and the global motion arises as the
solution of a differential equation. Both of these items are numerically well-understood,
and our approach lends itself to a practical implementation. Indeed, we implemented our
approach to produce animations such as Figure 1. However, this does not necessarily lead to
a finite algorithm in the strict sense. The optimization problem (7-9), having an objective
function which is rational, can in principle be solved exactly by solving the system h(p, z, \) =
0 of algebraic equations as in Lemma 7. The differential equation cannot be solved explicitly,
but it may be possible to bound the convergence and solve the differential equation up to a
given error bound.

Since the motions of a mechanism are described by algebraic equations, Streinu’s algo-
rithm leads to a finite algorithm for a digital computer, at least in principle. It remains
to be seen how a practical implementation competes with our approach; in any case, as an
algorithm for a direct realization of the motion by a mechanical device, Streinu’s algorithm
appears attractive.

On the other hand, the nonlinear programming approach might be preferable because it
produces a “canonical” movement. As a consequence of this, any symmetry of the starting
configuration is preserved (see Corollary 6).
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5 Additional Properties and Related Problems

5.1 Symmetry

We show that the deformation that we have defined in Theorem 1 preserves any symmetries
that the original configuration might have. We say that the arc-and-cycle set A has some
group H of congruences of the plane as symmetry group if each element of H permutes the
vertices and edges of A.

Theorem 6 If an arc-and-cycle set has a symmetry group H, then there is a piecewise-
differentiable proper motion to an outer-convex configuration, which is expansive until it is
separated, and the symmetry group H s preserved during the deformation.

Proof: Since A is bounded, there must be a point which is fixed by all elements of H. Let
this point be the origin, and let p; be any vertex of the configuration distinct from the origin.
Consider the infinitesimal flex defined by the conditions (7), (8), and (9) but not (10). There
is a unique solution v to this minimization problem. This solution must be symmetric with
respect to the symmetry group H. If not, then the action of some element of H takes v to
another distinct solution say v’, contradicting the uniqueness of the solution. There is now
a unique infinitesimal rotation that we can add to v so that p; and vy are parallel. This
still maintains the symmetry of the infinitesimal flex v. Now it is clear that the limit exists
as before in the proof of Theorem 1, and the symmetry of H is preserved. O

5.2 Increasing Area

A natural question is whether the expansive property of the motion implies that the area
bounded by each polygonal cycle increases. Here we show that indeed it does. First we show
how to extend any given expansive infinitesimal motion to any point in the plane.

Lemma 10 Given a set p = (pi1,-..,Pn) of points in B, an infinitesimal flex v of p that
is infinitesimally expansive (i.e., (p; —Pp;) - (vi—V;) > 0 for all i, j), and another point py in
E?, the infinitesimal flex can be extended to py in such a way that (vo,v) is still expansive

and all the new inequalities are strict unless py is in the convex hull of some subset of points
for which the infinitesimal flex is trivial.

Proof: We first consider the case where we want to prove strict expansiveness. By the
Farkas lemma, the desired inequalities (vo — v;) - (po — P;) > 0, can be fulfilled by some
unknown vector vq if and only if the dual system

> o) = 0 a7

Z)\ivi “(po—pi) > 0 (18)
i=1

Ai >0
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has no solution except the trivial solution A = 0. Suppose for contradiction that a non-trivial
solution \ exists. Without loss of generality, we may assume

=1

Then we get from (17) a representation of py as a convex combination

Po = Z)\ipi- (19)
i=1

Substituting this into (18) yields

i=1 j=1 i=1
On the other hand, multiplying the given inequalities
Vi'Pi—Vi'P;j—V; Pi+tV;-p; >0 (21)

by —A;\;/2 and summing them over ¢, = 1,...,n (including the trivial cases for i = j)
yields

n

i=1 j=1 =1

By the assumption of the lemma, we have A\; > 0 in (19) for at least two points p; and p;
whose distance expands strictly. This means that the corresponding strict inequality in (21)
will hold in (22) too, a contradiction to (20). This finishes the case when pg does not lie in
the convex hull of some points which move rigidly.

In the other case, non-strict expansiveness can be shown by a variation of the above
argument. Alternatively, we can appeal to Lemma 2 (or its higher-dimensional extension)
and let the point py move rigidly with the rigid point set in whose convex hull it lies. The
resulting motion is expansive; the distance from py to the other points will expand strictly,
with the obvious exception of the points with whom it moves rigidly.

The calculations of this proof are an extension of the calculations in [BC99].77 O

Using this result inductively, we can extend the expansive motion to any finite set of
points. We apply Lemma 10 to the vertices of an appropriately chosen triangulation of the
region bounded by any cyclic component. The following result can be found in [BGR88] and
later faster algorithms in [BMR95, Epp97].

Lemma 11 Any simple closed polygonal curve in the plane can be triangulated such that all
the triangles are nonobtuse.
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£24:01 There has been some interest in providing acute triangulations and subdivisions (in con-

£24:02 trast to nonobtuse triangulations) of various planar polygonal objects. For example, the
£24:03 column of Martin Gardner [Gar60] (see also [Gar95] and [Man60]) asks for a dissection of
£724:04 an obtuse triangle into acute trianges. But we do not know of a result guaranteeing an
£24:05 acute triangulation for a general polygon. Fortunately, the following is sufficient for the
£24:06 area-expanding property that we need:

£24:07 Lemma 12 Letv = (vy, Vg, v3) be an infinitesimal flex of a nonobtuse triangle p = (p1, P2, P3)
£24:08 such that for i # j,

£'24:09 (V,‘ - Vj) . (pz - p]) Z 0. (23)
£24:10 Then the infinitesimal change in the area of p is always nonnegative. If any of the inequalities
£24:11 in (23) are strict and the triangle p is acute, then the infinitesimal change in the area of
£24:12 p is positive. If p is a right triangle and (23) is strict for either of the legs of p, then the
£24:13 infinitesimal change in the area of the triangle is positive.

£24:14 Proof: Let the lengths of the sides of the triangle be denoted by a, b, ¢, and let the area of
£24:15 the triangle be denoted by A. If we differentiate Heron’s formula

£24:16 1642 = 2(a®b® + a?c® + b*c?) — (a* + b* + ¢*)

£24:17 and rearrange terms, denoting derivatives by o', b, ', A, we get

£24:18 8AA = (b? + ¢® — a¥)ad' + (a* + ¢ — b*)bb + (a* + b* — ¢*)cc. (24)
£24:19 We can regard ad’,bb', ¢’ as the left hand side of (23). Each of the terms in parenthesis in
£24:20 (24) is nonnegative since p is nonobtuse. Thus A" > 0. Strict positivity (A’ > 0) in the cases
24:21 indicated in the lemma can be checked easily. O
£24:22 Note that with a right triangle it is possible for the first derivative of the length of the
£24:23 hypotenuse to be positive while the first derivative of the length of the two legs is 0, and in
£24:24 this case the first derivative of the area will still be 0. This is the reason for the condition
£24:25 on the legs of the triangle.

£124:26 Theorem 7 Any smooth expansive noncongruent motion of a simple closed polygonal curve
£24:27 C in the plane, fixing the lengths of its edges, must increase the area of the interior of C
£24:28 during the motion.

£'24:29 Proof: Consider the vector field v;, 0 < t < 1 defined as the derivative at each vertex of
£24:30 C at time t. Apply Lemma 11 to find a triangulation 7" of the area bounded by C with all
£24:31 triangles nonobtuse. Apply Lemma 10 to extend the vector field to the vertices of 7'

£24:32 To get a strictly increasing area, we have to show that the triangulation 7" has an acute
£24:33 triangle with an edge interior to C, or a right triangle with a leg interior to C'. Otherwise,
£24:34 T would be a single triangle, or it would exclusively consist of right triangles with both
£24:35 legs on C, hence it would be a convex quadrilateral with two opposite corners having right
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angles. These cases are excluded because a triangle or a convex quadrilateral (or any convex
polygon) does not have an expansive noncongruent motion.

So we have established that 7" must have an acute triangle with an edge interior to C or
a right triangle with a leg interior to C'. Because the motion is expansive and the derivative
of at least one of those lengths must be positive for all but a finite number of times, the
derivative of the area of at least one of those triangles must by strictly positive, and they all
are nonnegative by Lemma 12. So the derivative of the area bounded by C' must be positive
for all but a finite number of times 0 < ¢ < 1. Thus the area must strictly increase. O

Notice in the proof above that we use the property that the edges of C' have fixed lengths
when we extend the vector field to points in the interior of edges of C'. These preserve the
motion on C. If the lengths of edges of C' are not fixed, then, for example, an obtuse triangle
can have an expansive motion that decreases its area.

5.3 Topology of Configuration Spaces

It is natural to ask more about the structure of the configuration space of an arc-and-cycle
set. Let X (G, L) denote the space of all configurations of embeddings in the plane of of a
bar graph G consisting of a finite number arcs and cycles, without self-intersections, where
the edge lengths are determined by L = (..., 4, j,...). This inherits a natural topology from
considering all the coordinates of all the vertices as part of a large dimensional Euclidean
space. Let Xo(G,L) C X(G, L) denote the subspace of outer-convex configurations. We
assume that L is chosen so that there is at least one realization in the plane. We mention
some results without proof.

Theorem 8 The space of outer-convex realizations Xo(G) is a strong deformation retract

of X(G).

The main point to remember is that the limit in Theorem 1 depends continuously on the
initial starting configuration. The following is a natural consequence of Theorem 8.

Corollary 2 If the underlying graph G is a single arc or a single cycle, then X (G, L) modulo
congruences (including orientation reversing ones) is contractible.

Here the main task is to show that the space of convex realizations is contractible.

It is interesting to compare X (G, L), as we have defined it, to the space of realizations
of an arc or cycle in the plane with fixed edge lengths, but where crossings are allowed. See
e.g. [LW95, KM99, KM95a, KM95b, KM96] for results about this space.

5.4 Open Problems

Another direction is to explore what happens when the arc-and-cycle set is allowed to touch
but not cross:

Conjecture 1 If G is a single arc or a single cycle, then the closure of X(G, L) modulo
congruences is contractible.
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We conjecture that motions can be realized by a sequence of relatively simple motions:

Conjecture 2 If A is an arc-and-cycle set in the plane, then there is a flex that takes it to
an outer-convex configuration, by a finite sequence of motions, where each motion changes
at most four verter angles.

It also remains open precisely how many such moves are needed.
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A Appendix: Expansive Motion for Several Compo-
nents

We show the following stronger version of Theorem 1:

Theorem 9 FEvery arc-and-cycle set has a piecewise-differentiable proper motion to an outer-
convex configuration that is strictly expansive for all time.

Proof: As mentioned in Section 4.2, the motion is defined in the same way as for Theorem 1,
except that the explicit pinning constraint (10) is removed from the definition of v = f(p).

As in the case of Theorem 1, we know that the initial value problem (12) has a unique
maximal solution p(t), 0 < ¢ < T, that cannot be extended beyond 7', and we have T' < co.
We have to show that, for ¢ — 7', the configuration p(t) converges to a configuration on the
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boundary of U. From the Boundedness Lemma (Lemma 9 in Section 4.2), whose proof if
given below, we conclude that the monotone limit

t
IQ:hm/HMMt
t—>T 0

exists. Therefore, for all t, > t; > t;, we have

Ipi(ta) — pa(t) | < / il dt < K - / o)) de.

t1

The last bound goes to zero as ty — T, and therefore p;(t) converges. The limit configuration
must lie on the boundary of the domain U because otherwise the solution of (12) could be
extended beyond T'. O

A.1 Proof of the Boundedness Lemma

We would like to show that under the expansive motion given by the optimization problem
program (7-9), the motion of individual points is limited (Lemma 9).

Before embarking on the proof, let us see consider a possibly difficult situation, which the
proof has to handle. This might aid the reader in appreciating the arguments of the proof.

We know that the distances change monotonically, and therefore their total change is
bounded if the distances remain bounded. However, it is conceivable that the points move
back and forth without increasing the distances too much. Consider three collinear points
P1, P and ps in a horizontal row. If the point p wiggles vertically with a small amplitude,
one can maintain an expansive motion where all distances remain bounded although p moves
on a path of infinite length. This conceivable situation must be avoided.

We may get arbitrarily close to this situation described if all points are very nearly
collinear. We can however get a quantitative estimate of the motion by placing bounds on
the minimum width and on the diameter of the point set. If the angles in the triangle p;pp2
are not arbitrarily small, the motion of p relative to p; and ps can be bounded in terms of
the increase of pairwise distances.

A.2 Bounding the motion in terms of angles and distance changes

We give two geometric lemmas that allow us to bound the motions in terms of quantities
that can only change monotonically.

Lemma 13 Let py,...,p, be the sequence of vertices of a component with the edges of fized
length ||p; — Pj+1l| = 4j41 for j =1,...,n = 1. (We are ignoring a possible edge from p,
to p1.) Say p1 and ps are pinned, i.e., vi = vo = 0. Let 0; be the internal angle at vertez j
(0 < 8; < m; we disregard the orientation of the angles). Then, fork=2,...,n,

Vil < (bro+ -4 Lerp) - (O3 +---+0,_1)
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Proof: Using complex notation,

Pj+1 — Pj Pj—1 — Py

= - exp(+6;7).
i i !
Taking derivatives gives
Vii1—V;, Vjii1—V; i1 — DPj
j+1 j_ Yi-1 J . exp(ieji) + Pj—1 7 Pj -exp(ini) (iG}z)
big+1 bij ~—— b1y  ~——
| =1 =l

Il 11=1

Taking the absolute value of both sides and using the triangle inequality,

||vj+1 _Vj” < ”vj—l B vj” + |0;| < |0;| 4t |0;|’
g UBY
and thus
1Vigr = Vil < €jgar- (10514 +1605]) < Lijpa - (105 + -+ [6,_11),
for j < k. Applying induction we obtain the desired result. O

The above lemma works only for single components. For disconnected components, we
want to bound the speed of motion v in terms of distance changes. However, it is always
possible to move the point set as a whole without changing any distances at all. Therefore
we will consider a modified motion in which one vertex p; is fixed (“pinned”). Another
vertex ps remains on a fixed line through p;, preventing the complete set from spinning.
This modification corresponds to adding a rigid motion of the point set p to the given
velocities v. It does not change the lengths ¢;; or their derivatives, (v; — v;) - (Pi — P;)-

The width of a set of points is the minimum width of a strip (infinitely long rectangle)
containing the set.

Lemma 14 Consider a set py,... ,Pn of points with distances {;; = ||p; — p;||, moving with
velocities v; = p; under an erpansive motion: E;j > 0. Denote the width by w. Without loss
of generality, we assume that the diameter is l1o =: D. We normalize the motion by pinning
P: and the direction of the axis from py to pa. In other words, we assume that vi = 0 and
vy is parallel to py — p1. Then, for every k € {1,... ,n},

Ivill < Co- 4,

i<j
where Cy = 666D? /w?.

The proof is given in Section A.6.
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A.3 Constant Quantities

We define the following constants. We denote by Dy the maximum sum of the edge lengths
in a single component. This is an upper bound on the diameter of a component. As we
shall see, Dyax := Dy6" ! is an upper bound on the distance between two points in the same
cluster (to be defined). Let mgy (0 < my < 1) be a lower bound on the distance between
two different components. (This may be the distance between two vertices or the distance
from a vertex to an edge.) Let my (0 < my < 1) be a lower bound on the distance between
between any two vertices (in the same component or in difference components). Since these
distances can only increase during the expansive motion, we just need to choose mg and m,
smaller than the minimum initial distance between two different components or between two
vertices.

The constant C' = 5328 D3

3 /me will play an important role in Lemma 18 and subse-
quently.

A.4 Combining components into clusters

In the proof we distinguish between components that are “close” to each other or even entan-
gled within each other and components that are separated. Namely, we call two nonempty
sets of points A and B well-separated if they can be separated by a line, and moreover, the two
inner common tangents separating A and B form an angle less than 60°. See Figure 10(a).

(a)

W4

Figure 10: (a) Two well-separated clusters. (b) Inductive proof of Lemma 15. D = D62
denotes the bound on the diameter of the two subclusters.

We now define a clustering procedure that will combine the components into clusters.
(This procedure is similar to bottom-up hierarchical clustering [Eve93, HJ97|, except that
we pay no attention to the order in which we merge clusters.) We start with each component
as a separate cluster. Whenever two clusters are not well-separated, we merge them into
one cluster. We repeat this until we end up with a single cluster or with a set of clusters
that are (pairwise) well-separated. The order in which we merge clusters has no effect on
the outcome. However, the clustering may change over time as the framework moves.

Lemma 15 A cluster with k components has diameter at most Dy6*~1.

Proof: By induction on k. Because a single component is connected, the case £k = 1
follows. A cluster with £ > 2 components results from merging two clusters of at most k£ — 1
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components that are not well-separated. By induction, these two clusters are contained in
two disks of radius at most Dy6F2. If the distance between the disk centers were bigger
than 4 - Dy6%=2, the two sets would be well-separated; see Figure 10(b). Hence the union of
the two circles, which contains the cluster, has diameter at most (2 + 4) - Dy6572 = Dy6*~1.

O

So the quantity Dpa.y := Do6" !, which has already been introduced, is indeed an upper
bound on the maximum possible distance between two points in the same cluster.

Lemma 16 A cluster with at least two components has width at least my/2.

Proof: Assume for contradiction that a cluster with at least two components lies in a strip
of width less than mg/2, which we can without loss of generality assume to be horizontal,
as in Figure 11. Consider any two components in the cluster. By the definition of my,
the distance between these two components is at least mg > mg/2. Hence, there must
be a vertical line separating the two components. Consider one of the two inner common
tangents. The segment between the tangent points has length at least my and lies in the
strip. Therefore the angle between the tangent and the horizontal axis is less than 30°, and
the same is true for the other tangent. It follows that any two components in the strip are
well-separated, and therefore they do not belong to the same cluster. O

<m0/2

Figure 11: Proof of Lemma 16: two components in a thin strip.

Lemma 17 Let p;1 € Vi and pa € V5 be points in two well-separated clusters Vi and Vs, and
let ¢V and ¢ denote the center of gravity of the vertices in Vi and Vs, respectively. Then
the angle between the vectors po — p1 and ¢@ — eM 4s at most 60°. d

A.5 Rounding up the proof

Using Lemmas 13 and 14, we can bound all velocities v; in terms of the sum of £;; over all pairs
(Pi, Pj) in the same cluster (plus some #'-terms to accommodate single-component clusters).
These quantities cannot grow indefinitely: we have an upper bound on the diameter of a
cluster.

Lemma 18 Let Vi denote the set of vertices of a cluster and Ty C Vi the set of degree-2
vertices, with angles 0; for j € T1,0 < 0; < . If the motion is pinned as in Lemma 13 (for
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the case of a single-component cluster) or Lemma 14, (for a multi-component cluster), then,

for every k € Vi,
vl <C- 3 £+ D0- 38,

4,JEV1 1€T
where C = 5328 D3

max/mg *

Proof: The first term handles a cluster with at least two components by Lemma 14. We
have width w > mg/2 by Lemma 16 and diameter D < Dy, by Lemma 15. The second
term accounts for a single-component cluster and follows from Lemma 13. O

Everything so far has been generic to expansive motions. Now we will use the precise
form of (7-9).

Lemma 19 Let D(t) = max{1,max; ey £;;(t)} denote the diameter at time t raised to be
at least one. By {;j(t) := min{¢;;(t), Dmax} we denote the “truncated” distances. T C V
denotes the set of degree-two vertices. Then the solution v; of the minimization problem (7—

9) is bounded by
(C >, +D020;+2> -D(t)

=% ieT

6n
mom;y

[vell <

Proof: The strategy of the proof is as follows:
1. Start with v; given by the optimization problem (7-9).

2. In each cluster separately, “normalize” (“pin”) v; as indicated in Lemma 18, yielding
“well-bounded” v;’s for each cluster.

3. Combine these pinned motions into an overall expansive motion by adding a vector to
each cluster that ensures that the clusters will fly away from each other. We have con-
trol over those vectors, and we guarantee that the overall motion is still well-bounded
(bounded in terms of the sum of £;; over all pairs i, j in the same cluster.)

4. Thus we have shown the existence of a well-bounded solution. Using the minimizing
property of the optimization problem we conclude that its solution is also well-bounded.

Here are the details. Assume that there are K clusters with vertex sets Vi,... , Vk. We first
consider the motion ¥(") that is obtained from v by restricting it to a cluster V, and pinning
it as in Lemma 13 or 14. We know that

W< 30 By Do Y 0= HO (25)
ijEVr i€Ty
for all k£ € V.

By construction, all distance increases ||[v" — frgr)” satisfy the conditions (8-9) for i,
in the same cluster V,. We will now add a vector to the motion of each cluster in order to
ensure that the expansion (8) also holds for points in different clusters. Intuitively, we want
the clusters to “fly apart,” but in a controlled manner.
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Let ¢ denote the centroid of cluster r. We set
v =2-v" 4+ E. (" - py) (26)
for k € V,, with an arbitrarily chosen fixed vertex p; and with the abbreviation
E:=2HY+H® 4+ ...+ H® 4 2)/m, > 4.

Note that moE/2 is the value in parentheses in the bound of Lemma 19 that we want to

prove. For vertices in the same cluster, we get v; — v, = 2(\7'@ - \A/'J(-T)), and hence the

7
constraint
(vi = v;) - (pi — Pj) > |IPi — Pl (8)

is “twice over-fulfilled:”

(Vi = v;) - (Pi — Pj) > 2~ [|pi — Pyl
So we get the penalty term

(i =9;) - 0= ;) = Ipi = ps11] 7" < [llpi = p5ll] " < 1/mu. (27)

We claim that this inequality also holds for points ¢z and j in two different clusters V, and V.
We have

@i=9)-(pi—p;) = 7 =¥)-(pi—p;) + E (e — ) - (p; — p))

> |E (5(7") - é(s)) (P — Pj)| - ‘(‘A’zm - fff)) (P — pj)
e =&V - |lps = pyl| = (H® + H®) - |p; = p

- o

by LeI;ma 17
Ipi — pjll [Emo/2 — (H? + H®)]
2 |lpi — pjll

\Y

&y
21
a

>
>

by the definition of E. So v is indeed a feasible solution to (8-9), and (27) holds for all
struts {i,5} € S. From (25) and ||c™ — p1|| < D(t) we obtain the bound

[Vell <2H® + E - D(t) < Emo+ E - D(t) < 2E - D(t)

because we defined D(t) to be at least 1.
(From this and from (27), the objective function (7) for the solution v that we have
constructed satisfies

_ _ _ -1
SoIwP+ D2 (% =%) - (0 = py) ~ lIpy — pill] T < - (2B D)+ 0/my
eV {i,5}€S
1 2 2
<n2.(2E-D@)?-— + 2. par = 2"
mq ma my

B2 D) < <3—n-E-D(t))2. (28)

ma
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It follows that the optimal solution v, from which we started, must also satisfy this inequality.
Therefore we obtain,

2
-1 3n
Sl < Sl ¥ v e p) - Iy - wil) < (25D
iev icv {ij}es !

and hence, for every k € V,

Vil < /> IIvil |2<— E-D(t) =

Corollary 3 D(t) < D(0)ef® where F(t) = 222 (Cn?Dpax + Donm + 2t).

momi

Proof: By noting the relation D'(t) < 2maxgcy ||vk||, we can apply the previous lemma to
obtain an upper bound on D'(t)/D(t) = 4 log D(t):

D'(t) _6nE _ 12n
< < D "2
B0 S S e (CZZ + Do 0+ )

1,jEV €T

Integrating and noting the bounds Eij < Dpax and 6; < m, we obtain

P D'(t) 12n
log D(t) — log D(0) = dt < Cn?Dyax + D 2t) . O
og D(t) ~1og D(0) = [ Fildt < 2 (Cr Dy + Dy + 21

We finally establish the result of the Boundedness Lemma (Lemma 9).
Corollary 4 The path length of a vertex py until time T is bounded by
T D(0)F(T
/ ||Vk||dt < ( )2 ( )eF(T)
t=0

Proof: This follows from Lemma 19 and the previous corollary:

T T
3nkE T 3nE F(T
/ Ive(®)ll dt < / E pwat< [ 2 a oy < ED) pey.ern o
0 0 m]_ 0 m]_ 2
Remark: By a different choice of shifting vectors in (26) instead of E - &) for each
cluster it is possible to avoid the exponential “blow-up” in the above bounds.

A.6 Proof of Lemma 14

Unfortunately, the proof of Lemma 14 is quite elaborate. It is based on the special case of
three points, which is elementary.

Lemma 20 Consider a triangle with sides a,b,c bounded by m < a,b,c < D and angles
a, 3,7 that are bounded by sin i, sin 3, siny > > 0. If the sides of the triangle are expanded
with velocities a',b', ¢’ > 0, then the change of the angles is bounded by

2D ! / /
||, _m2u-(a+b+c)
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Proof: The cosine law gives — cos = —(b*+¢? —a?)/(2bc) = %[a?/(bc) —b/c—c/b]. Taking
the derivative and omitting negative terms on the right-hand side leads to

in o < 1 (2ad n bc n ct/
asina< - | —+4+ —+ —
— 2\ bc 2 b

1 D D
)S5(2a'+c'+b')wS(a'—i—c’—i—b')w

and thus, o/ < (a/+b'+¢')-D/(m?u). We get the same upper bound for 8’ and 4. To obtain
a lower bound, note that a+ 3+~ = 7 and hence o’ = —3'—+' > —(a' +V' + ') -2D/(m?u).
By symmetry, the same bound holds for the derivatives of the other two angles. O

Proof (Lemma 14): Let p3 be the point whose distance h from the segment p;p, is largest.
By assumption, w/2 < h < \/3/7 D. So the points are contained in a rectangle K of length
D and width 2h, see Figure 12. Without loss of generality, we draw p;ps horizontal from
left to right and p3 above pips.

P3

R
3 s

h>w/2

a1 Q@2 P2

P1

R1 R2
lig=1D

Figure 12: Proof of Lemma 14.

We use the triangle p1p2p3 with angles a1, as, a3 as a “reference frame,” and we measure
the motion of the other points with respect to this frame. In particular, every point will
be assigned to one of the sides of the reference triangle: We partition the rectangle K into
three regions R;, Ry, R3 by extending the three angular bisectors from the incenter into the
direction away from the vertices from which they emanate. R; is the region containing the
point p;, for © = 1,2,3. Now, every point p; is assigned to the triangle side which lies
opposite to the region in which it lies. For example, a point p; in region R; is assigned to
p2p3. We use this side as a basis of the triangle popsp; that is associated to p;, and we
select one of the angles at the basis as the reference angle §; for p;. If p; lies in R, we select
the angle at p, in the triangle popsp;. If p; lies in Ry, we take the angle at p; in the triangle
psP1P; as the reference angle 3; for p;, see Figure 13; and for p; in R3, 3; is the angle at
p1 in the triangle p;p2p;. Note that these assignments are not completely symmetric. The
rationale is to select a reference angle incident to p; or ps.
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Figure 13: The triangle psp:p; associated to a point p; € Ry in the proof of Lemma 21.

The idea is that the triangle associated to each point cannot have arbitrarily small angles,
and hence is produces a “firm grip,” tying the point to its base: The point cannot move an
unlimited distance without increasing the pairwise distances ¢;; by a noticeable amount.

Lemma 21 The reference triangle p1p2ps satisfies the assumptions of Lemma 20: The sines
of the angles are at least p:= w/(3D) and the sides are at least m := w/2.

The triangles associated to each point satisfies the assumptions of Lemma 20: The sines
of the angles are at least p:= w/(20D) and the sides are at least m := w/4.

This lemma is not difficult to see but the precise proof is a bit technical and it is given
at the end. Lemmas 20 and 21 allow us to conclude:

2D 24 D?

(/2 w@D) Gt st ) < = 5 L

o, lagl, [a5] < ,

w3

with L := ZK]. ¢;;, and for every point p;:

2D 640D?

185 < L <

(w/4) - w/(20D) b

w3

Now we can bound the motion of p; as follows. For p; € R3, the angle 3; between the
fixed ray pip2 and the ray p;p;, and the length ¢;; determine the position of p; like polar
coordinates. We therefore have

gl = \/(€1385) + (8,7 < 51851 + £

For p; € Ry, the situation is similar, except that the angle between the “z-axis” p;p2 and
p1P; is given by a; — (3;, see Figure 13:

P51l < Lol ] +1551) + 43
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Figure 14: Proof of Lemma 22

For p; € Ry, the situation still more complicated, because the “origin” p, of the coordinate
system moves at a speed of #;,. The angle between the “negative z-axis” pop; and pyp; is
given by ap — §;.

P51 < [IP5 I+ 1Py — Pall < L1y + boj([as] + 165]) + £,

Putting everything together, we get for every 7,

24D? 40D? 43 D3
Mol =gl < 2+ D+ (220 £ 4 B0 1) s = (24 B2 1 < SO,

w3 w3 w3 w3
using D > w. This concludes the proof of Lemma 14. O

Finally, we have to prove Lemma 21. An elementary geometric fact is needed.

Lemma 22 In a triangle ABC' with height he through C, the distance of C from the angular
bisector g of the angle o at A is at least ho /2.

Proof: Let C' be the foot of hc, and let D be the point on g closest to C, see Figure 14.
Then C’" and D lie on the circle over the diameter AC. The chords CD and C'D are equal
since their peripheral angles at A are both equal to a/2. (If & > 7/2, the peripheral angle
over C'D is not «/2 but m— /2, and for o = /2 the equality of the chords follows directly.)
From the isosceles triangle CC'D we get CD > h¢/2. O

Proof (Lemma 21): We first prove the lower bound on the lengths of the edges. The
basis edges p1p2, P2P3, and psp; all have lengths at least A > w/2. By the construction of
the three regions, the point p; is separated from the point p; on its base segment (i = 1, 2,
or 3) by the angular bisector of the angle at p; in the triangle p;psps. From Lemma 22 it
follows that the distance p;p; is at least 1/2 times one of the three heights of the triangle
P1P2Ps- The smallest height of this triangle is opposite to the longest edge, which is p;ps.
This height is h, and we obtain ¢;; > h/2 > w/4.

Now let us consider the angles. Note that it suffices to check the condition of Lemma 20
for the smallest angle: if o is the smallest angle in a triangle with angles «, 3,7, then
a < @,v7 <7 — «a, and hence sin ,siny > sin a.
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The angle a; in the triangle p;pops is bigger than the angle between p;p, and the ray
from p; to the upper right corner Kyg of the rectangle K:

h h w/2 w
> > > > —
vVD2+h2 ~ V/2D2 ~ \/2-D ~ 3D

and similarly for a,. The angle a3 lies opposite to the longest edge of p;p2ps, and hence it
is the largest angle. So we have shown the length and angle bounds for the reference triangle
P1P2Ps3-

Let us now consider the triangle associated with a point p;. We denote the basis angles
of the triangle by v; and 7, and the angle at the apex p; by ¢, see Figure 13. By construction
of the angular bisectors, an angle v, at the base is at least 1/2 times the respective angle «;
in the reference triangle pp2ps. So we have sin y;,siny; > sin §& > (sino;)/2 > w/(6D).

So the only angle which remains to be checked is the third angle ¢ at p;. If p; lies in R,
d lies opposite to the longest side of the triangle p;psp;, and we are done.

In the remainder of the proof we show rather tediously that sind > w/(20D) when
p; € Ry or p; € Ry. Let us consider a triangle psp;p; with p; € Rs, see Figure 13. (The
case p; € R, is symmetric.) Keeping p; and p; fixed, ¢ is smallest when ps moves on the
upper side of the rectangle K to the upper left corner py = Kyr. (This position of p3
is hypothetical because fo3 would be larger than D.) Keeping p; and p, fixed, the angle
d = Zp1ppo is a quasi-concave function of p = p; as p moves inside K. (This means that
the region in K where 0 is bigger than some given threshold is alway convex.) Hence the
minimum value of § on any line segment occurs at one of its endpoints, and it suffices to
check the lower bound for ¢ for the corners of the region R,. More specifically, it is sufficient
to check it for three points: (i) p = Kuyg, the upper right corner of the rectangle K; (ii)
p = Kir, the lower right corner of K; and (iii) p = X, a point on the lower edge of K at
distance h/9 from the lower left corner.

The other corners of Ry can be treated as follows: If p is the intersection U of the
bisector of a; with the upper edge of K, then § decreases as p moves right towards Kyg.
If the bisector of a; intersects the boundary of K in the right edge, then the intersection
point lies on the segment between Kygr and Kir, and hence it is dominated by one of these
points. (This situation occurs for region R; in Figure 13.) The incenter I can be treated in
the same way as U, by moving p horizontally to the right until it hits the right edge.

Another corner is the intersection L of the bisector of a3 with the lower edge of K.
We cover this case by showing that the point X lies in region R;. Therefore L lies on the
segment between X and Kpg, and hence it is dominated by these two points. If the bisector
of a3 intersects the boundary of K in the right edge, it is dominated by Kygr and Kigr. The
bisector cannot intersect the boundary of K in the left edge because of the point X.

Let us now consider the points p = Kyr and p = Ky r. By symmetry, p = Kyg yields
the same angle ) = Zpopp: as p = p2 and that cannot be the minimum because it lies
between Kygr and Kir. For p = Ky, the sine law for the triangle popp: with the angle

0 = ZpoPpp1 gives

sin oy

sind _ sinZpopip _ D/VD?+ h? S D
h PoP VD2 + (2h)2 ~ /2D?%-\/5D%
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using h < D. So we get

‘ -

3l
SIE

>

ol =

sind >
2

ja)

and the lemma holds in this case.

Let us finally consider the point X. Since h < \/?ﬁ - D, the point X lies on the
lower edge of K. We show that the distance of X from the ray pszp; is smaller than the
distance from the ray psps, and therefore X lies in R;. The distance of X from the ray
p3p: is at most the distance Xp; = /14 1/81 - h < 1.0062 h. The point on the ray psps
which is closest to X lies either on the segment psp, or in the region to the right of the
rectangle. In the latter case, the distance is at least D — h/9 > (1/4/3 — 1/9)h > 1.043 h,
which is larger than Xp;. In the former case, the distance between X and the segment
P3p2 decreases if p3 or ps are moved horizontally to the left. In the extreme cases, when
Ps = Ky, = po and t1o =D = \/m - h, this distance can be calculated as > 1.439 h,
which is also larger than X'p;. A final calculation show that the angle § = ZpyXp; satisfies

sind > 0.055 > 1/20 > 5%, since w < D, and the proof is complete. O
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