Enhancing GJK: Computing Minimum and Penetration Distances
between Convex Polyhedra

Stephen Cameron
Oxford University Computing Laboratory
Parks Road, Oxford OX1 3QD, UK

stephen.cameron@comlab.ox.ac.uk

Abstract

The problem of tracking the distance between two con-
vex polyhedra is finding applications in many areas of
robotics, including intersection detection, collision de-
tection, and path planning. We present new results
that confirm an almost-constant time complexity for
an enhanced version of Gilbert, Johnson and Keerthi’s
algorithm, and also describe modifications to the algo-
rithm to compute measures of penetration distance.

1 Introduction

In robotics we are finally moving towards a situation
whereby it is possible to apply some non-trivial al-
gorithms for analysis, simulation and planning to re-
alistic models of robots and environments. Examples
of these algorithms include intersection detection (i.e.,
would two static objects occupy some common region
of space?), collision detection (i.e., will an interference
occur between two moving objects?), and path plan-
ning. A very useful and basic function between objects
is their distance apart.

In this paper we will focus on the problem of finding
the distance between known pairs of convex polyhe-
dra. Variations have also appeared, fuelled by the fact
that when objects are relatively far apart we rarely
care about an exact answer, or by the fact that (in
robotics) we are usually keeping track of the distance
between objects as (simulated) time is stepped for-
ward. For this tracking problem Lin and Canny [8]
claim an ‘almost constant’ time complexity, and we
have recently shown [4] that a minor modification to
the algorithm of Gilbert, Johnson and Keerthi [6] also
gives that algorithm the same theoretical time com-
plexity. The first part of this paper then will con-
centrate on demonstrating this behaviour experimen-
tally for our enhanced version of the Gilbert, Johnson
and Keerthi algorithm (GJK), and in explaining some
parts of our implementation that differ from that de-
scribed in [6]. Both GJK and the Lin-Canny algorithm
(LC) have been extended in various ways, including
treating objects as collections of convex pieces, and
the inclusion of non-polyhedral objects [5, 11, 10, 12].
However in the extensions the efficient solution of the

basic problem is still a key issue, and we demonstrate
here that the convex polyhedra case can be solved fast
enough to make its special treatment worthwhile.
When two (simulated) objects interpenetrate then
the distance between them decreases to zero. For col-
lision detection, say, it is often quite acceptable to
accept zero as an answer, but this solution gives no
hints as to how to extricate the system from this con-
dition. Thus measures of interpenetration have been
defined, which can provide a numerical clue as to how
to remove one object (say, a robot arm) from another.
So we will also here briefly consider the computation
of MTD (mininum translational distance), which is
the size of the smallest translation required so that
two objects come into contact (only) [3]. For non-
penetrating objects MTD returns the usual Euclidean
distance, and for penetrating objects it is defined to
return a negative number that gives a measure of how
hard it is to remove one object from the other. [2] de-
fined a measure that gives the same answer as MTD
over their common range of definition, and more re-
cent definitions of penetration measures include [7, 1].

2 Using Configuration Space

In order to understand and compare the action of the
algorithm it is helpful to recast the problem using con-
figuration space. MTD is defined in terms of the aux-
iliary function MTD™, where

MTD*(A,B) = iItlf{ [t| : A+t is in contact with B },

t ranges over all possible translation vectors, and A+t
indicates the object A after having been translated by
t. Fig. 1 illustrates the definition, with the arrows
showing the minimum translation vectors (dashed ar-
rowed lines) to move A to place it in contact with
B, or to move C to place it in contact with B. Both
vectors have the same length, and so MTD*(4, B) =
MTD*(B, (), but we distinguish the cases of overlap
and non-overlap by defining MTD to be the value of
MTD™ if the objects do not overlap, and minus the
value of MTD* otherwise.



MTD(A, B) =
—MTD(B,C)

B
A
V\\A C

Figure 1: Illustration of the function MTD.

This definition can be seen to give a ‘reasonable’
value, and the sign of MTD gives an easy answer to
the interference detection problem, but the definition
does not tell us how to compute MTD™*. However if
we consider the translational configuration space (TC-
space) of the objects, then we can define their trans-
lational C-space obstacle (TCSO) as

{b—alacAandbe B }.

This may also be recognised as the Minkowski differ-
ence operation as used in path planning [9]. Then
a result proved in [3] is that the minimum distance
between two objects is the same as the minimum dis-
tance between the origin of TC-space and the TCSO:
that is,

MTD(A, B) = MTD(O, TCSO(A, B))

where O is the set containing the origin only, and so
the problem of finding the distance between two n-
dimensional point sets has been transformed into that
of finding the distance between a point (the origin)
and another n-dimensional point set.

If we take the TCSO of two convex polyhedra P
and @, then the TCSO is another convex polyhedra,
and each vertex of the TCSO correspond to the vector
difference of a vertex from P and a vertex from ().
To compute the minimum distance between P and )
both LC and GJK use a loop in which two surface
points—one from P and one from Q—are tracked. We
call these points—which are not necessarily unique—
witness points as when the minimum distance has been
found then these points are that distance apart.

For the tracking problem we will normally be call-
ing a distance algorithm many (i.e., hundreds or more)
times, so that each call corresponds to the next in-
crement of simulated time. When either LC or GJK
called to compute the distance at some time step then
it normally makes most sense if the witness points for
the algorithm are initialised to be same' as the witness
points that were found at the last time-step. In this
case one of the assumptions used to obtain the ‘almost
constant’ time complexity for both algorithms is that
the witness points that realise the minimum distance
for the new time step will be close the seed values of
the witness points.

1By ‘same’, we mean the same points relative to the objects
on which they lie. These objects will in general be moving, and
so the coordinates of the witness points may well have altered.

TC-space

Figure 2: Examples of witness-point transitions as the
objects move

Given a pair of witness points (p,q) then each
is a surface point on P and (), and their difference
q — p is a surface point on the TCSO, which we call
a TC-witness point. Then as the polyhedra move and
the witness points move from feature to (neighbour-
ing) feature on the objects, then the witness point
in TC-space moves between neighbouring features on
the TCSO. This process is illustrated in Fig. 2, which
shows witness points moving from a vertex-face fea-
ture pair to a nearby edge-edge pair, and thus between
two neighbouring faces on the TCSO.

3 Overview of the Gilbert, Johnson
and Keerthi Algorithm

Several items of information cached as part of the
tracking process in GJK, from which the witness
points can be easily computed as required. The key
piece of information is a set of 1-4 pairs of vertices
(one each from P and @) that define simplices (i.e., a
point, bounded line, triangle or tetrahedron) in each
object, and a corresponding simplex in the TCSO. At
initialisation we can set this simplex randomly, say by
picking a single vertex from P and (). The idea is that
the simplices will contain the witness points (and TC-
witness point) on their boundaries; to make this true,
each call of GJK can be expressed as a very simple
loop structure involving two key sub-routines:

while not best_simplex( S) do
S < refine features( S);
endwhile

which checks whether the simplex does contain the
witness points using best_simplex, and if not tries
to find a neighbouring simplex that does using
refine simplex. The details of these sub-routines
will be explained below, but note that in practice the
loop body is typically only executed once or twice per
call to GJK when tracking, and on average 3-6 times
per call at initialisation, even for polyhedra with hun-
dreds of vertices.

3.1 Dbest_simplex

For best_simplex we can use the fact that if the wit-
ness point is the closest to the origin then all of the



points of the TCSO must lie to the far side (i.e., fur-
thest from the origin) of a plane passing through the
witness point and perpendicular to the line from the
witness point to the origin. That is, if x is the current
witness point then for all vertices v; of the TCSO we
have gx(v;) < 0, where gx(v) = x-x—x-v. Con-
versely, if there exists a vertex v; with gx(v;) > 0
then there is some point in the TCSO that is closer to
the origin than x is. In particular we can look for a
v; which maximises (—x) - v;, which is called a sup-
port vertex for the given direction (—x). This can be
done without explicit reference to the TCSO, as the
support vertex on the TCSO is given by the vector
difference of support vertices for P and @ (relative to
the directions x and —x). Thus the finding of support
vertices becomes a critical part of the algorithm; in
[6] this was done by looking at each vertex of both
polyhedra, giving rise to a linear time complexity.

3.2 Enhancing GJK

An alternative to computing the support vertex func-
tion by looking at all the vertices is to use hill climbing,
in which we start each time from the previous vertex
voiq that was returned by the support vertex function
(at the last time-step). Then given a new support di-
rection we set v = v,;q and compare x - v with x - v;
for each neighbouring vertex v; of v (i.e., for every
vertex that is connected to v by an edge of the poly-
hedron). If each x-v; > x- v then we stop and return
v, otherwise we set v to a neighbouring vertex that
gave a smaller value and recurse. By the convexity of
the polyhedra this process will terminate at a support
vertex. When tracking we only expect this process
to traverse 0 or 1 edges most times, giving rise to a
time complexity bounded by the degree of the vertices
(normally about 3).

Hill climbing was also used in [12], and we suspect
that it may have been added by other users of GJK
as well. For larger convex hulls it gives a dramatic
improvement in computation times over the original
GJK algorithm—see §4.

3.3 Solving Each Simplex

We need to find the nearest point to the TC-space
origin on each vertex, edge, and face (as appropriate)
of the current simplex. The method used by GJK
does precisely this, but is expressed in linear algebraic
terms. For a simplex in T'C-space defined by aset S’ =
{x; } of up to 4 linearly-independent points, then the
TC-witness point pg: for the sub-space defined by S’
(i.e., a point, line, plane, or the whole of TC-space) can
be written uniquely as ps: =), Aix; with . A; = 1,
and this point will lie within the simplex if all the A;’s
are non-negative. Now note that pg: must have the
property that it is perpendicular to all lines contained
in the sub-space, and in particular (x; — x1) -pg: =0

for each 7. This, together with the constraint on the
sum of the A;’s, gives us a system of [ linear equations
in [ unknowns,

[ A A M ]Mg=[10 - 0]
where the [ x [ matrix Mg/ is given by

(xi1 —x1) " x1
(x1 — x1) " X2

1 (X2 — Xl) X1
1 (X2 — Xl) - X9

1 (x2—x1) % (x1 —x1) "X

Then this equation has a unique solution if the deter-
minant of Mg 1s non-zero.

Given the current simplex defined by points S we
do not know a priori whether the closest point is to
an edge (say) of the simplex or to some other feature.
However by looking at the cofactors of Mg GJK sys-
tematically finds the smallest S’ C S which contains
the solution. Rephrasing [6, eqn. 30] slightly, we ob-
tain the recursion

Ax({x}) = 1
Ax(Y+x) = D> Ay(Y)x(y-zv -y %)
yey

where ‘+’ denotes the addition of a point to a set
which did not previously contain it, and zy is an ar-
bitrary (but fixed) element of Y. A simple technique
gives us an easy way of ordering these terms?: from
an arbitrary ordering of the simplex vertices x; we in-
dex the subsets by saying that the subset numbered
m contains x; if and only if the 7’th bit in the binary
representation of m is a 1. We also set zy to be the
x; of smallest ¢ in Y. Then by examining our table
of Ax(S") values the subset yielding the shortest dis-
tance can be found by inspection—it is the subset S’
for which x € §' & Ax(S’U{x}) > 0. The only way
that this test can fail to identify S’ is if Ax(S) < 0 for
each x € S, which means that the origin is within the
simplex and we have interference between the polyhe-
dra.

The corresponding A;’s can be obtained with just
another [ divisions, and if we want to obtain explicitly
the witness points for each polyhedra then as each
x € S’ can be expressed as a vector difference of some
xp € P and a xg € (@ so the individual witness points

are y_ Axxp and ) AxXg.

3.4 refine simplex

Ignoring for now the interference case (§5), when we
compute the nearest point to the origin on the simplex
in TC-space then that must be to either a point, an

2If S contains n points there are n2”~! values in total re-
quiring n(n — 1)(27"~2 — 1) non-trivial multiplies and %n(n +1)
dot-products,



edge or a face. Thus this point can be expressed as
a linear combination of 1-3 TCSO vertices. Further-
more, if best_simplex returned false then the support
vertices that we found from P and ) define a new ver-
tex of the TCSO. So refine_simplex simply adds this
vertex to the existing set defining the simplex to ob-
tain a new simplex defined by 2—4 vertices, ready for
the next iteration of the outer loop.

4 Results

The theoretical analysis [4] of the algorithm suggests
that we would expect the routine to take roughly 93—
135 arithmetic operations (i.e., multiplications and di-
visions) for each computation when tracking. An early
version of this routine has been running for some time
as part of our OXSIM path-planning framework [11],
but this only gave us anecdotal evidence of its effec-
tiveness. We have now encoded the enhanced ver-
sion of GJK in ANSI C, together with a test-harness
that allows us to gather statistics on its operation over
many (i.e., thousands or millions) runs, and to inde-
pendently check the answers returned 3.

The objects tested were either boxes, of various or
aligned orientations, or randomly generated convex
polyhedra. Each polyhedra was generated about the
origin, and then one of each pair given a randomly-
generated translation. Sequences of tests were then
generated by applying a translation and/or a random
rotation to one of each pair of objects; a typical test
run would consider 100 pairs of objects, each tested
using 10 random motions. The distributions for the
random shapes, starting positions, and incremental
motions were varied to check for sensitivity of the re-
sults to these parameters. The random convex hulls
were generated by generating random point sets, and
then extracting the topological properties of their hulls
using QHULL (from the Geometry Center at the Uni-
versity of Minnesota). In order to take account of the
relatively coarse nature of the computer’s clock the
distance routine was timed over a large number (103~
10%) of identical calculations.

Fig. 3 shows average timings for runs with large
numbers of vertices per convex hull and without the
use of tracking information. The data-points plot-
ted are times (in ps) for a complete distance calcu-
lation. All of the timings in this section were done
on a 120MHz Pentium PC running Linux, and the
code was compiled using the gcc compiler with opti-
misation turned on. This figure illustrates clearly the
usefulness of hill-climbing, with the effect being most
noticeable for larger hulls. The number labels on some
of the points refer to the average number of arithmetic
operations, and they demonstrate that the times are

3The code is

http://www.comlab.ox.ac.uk/~cameron/distances.html.

available via

14525+

2000~ Without Hill Climbing -<-
With Hill Climbing -—+-

11179+
1500- -

8436+

1000~

500- 4033+

2710+ .
S P D < IATE
e S == 1154% 1229%
P e -7
po
o v v ) . . v ] . . .
50 100 150 200 250 300 350 400 450 500

Figure 3: Plots of average times (vertical axis, in ps)
against number of hull points for larger hulls without
tracking, with and without hill-climbing.

600~
3574+

500 Without Hill Climbing -o-- »
With Hill Climbing -+ 2837

400- 2207+

300~
_+i397

200-

100+

Lo
+361
B T T R 137 140777 120 134
o v
50 100 150 200 250 300 350 400 450 500

Figure 4: Plots of average times (vertical axis, in pus)
against number of hull points for larger hulls with
tracking, sequence length of 20.

almost linearly related to the number of operations.
We shall return to this point in later discussion.

Fig. 4 shows what happens when we switch on the
tracking mechanism. The sequence length here is 20;
that is, for each pair of objects we compute the dis-
tance once from scratch, and then use the tracking
information for another 19 instances. (Any sequence
of length greater than about 5 shows a similar reduc-
tion in time, as the cost of the first distance calculation
is amortised.) Without hill-climbing we see an almost
linear function, as the time is dominated by that taken
to compute the support function. This takes 6n oper-
ations per iteration, for n-point hulls; demonstrating
that the average number of iterations per calculation
is indeed quite close to 1. The other dramatic effect
is the time taken with hill-climbing; not only is it just
a fraction of the time taken without hill-climbing, it
is very close to being a constant, varying between 32—
42pus for this set of (randomised) motion parameters
and hull sizes between 10 and 500.

The reason why we see bounded time for our en-
hanced GJK is that we are essentially testing whether
the TC-witness point is moving from one feature of the
TCSO or not, and most of the time it will not move.
However this depends, of course, on how quickly the
TC-witness point does moves. Another thing that can
cause a movement to another feature is if the original
feature changes, and this will happen if the objects



160
140- . s
120-
100- e B
80-
60-

40+

20-

s0 100 150 200 250

Figure 5: Plots of average times (vertical axis, in us)
against number of hull points for different types of
motion.

rotate relative to one another. For the experiments
shown in Fig. 4 each sequence used only a constant
translational motion. Fig. 5 shows the effect of try-
ing different parameters for generating the random
motions, using different combinations of average dis-
tance, velocity, and rotational velocity. Nine traces are
shown, showing different combinations of three choices
of no/low/high rotation changes (solid/dotted/dashed
lines) and different average distances between the ob-
jects. In these results we used incremental rotations
chosen randomly to shift up to 0°/6°/12°. Many more
data-sets were generated; we have only shown a few
that illustrate the trends for the sake of clarity.

The circled points show the objects at a reasonable
average distance apart, of about 3 object diameters
using roughly ball-shaped objects. As the objects are
moved to roughly 1 object diameter apart (crosses)
the times increase slightly, but still levelling off at be-
low 50pus on this processor. An increase like this is
to be expected, as the relative shift of the TC-witness
point will decrease with distance apart. Finally, as the
objects actually interfere much of the time (boxes),
then the usefulness of the tracking information drops
off, and the times start to increase towards what we
would see without tracking (i.e., roughly twice the
times taken here).

Manufactured objects show much more regularity
than the randomly-generated objects used here. With
boxes we find that the computation times are even
lower, at 10-20us for the lower two triples of traces,
and 20-30us for the upper triple.

5 Estimating Penetration Distance

When the objects interpenetrate the origin of TC-
space slips into the TCSO, and GJK discovers a sim-
plex (almost certainly a tetrahedron) containing the
origin and within the TCSO. We can ensure that all
of the vertices of the simplex found by GJK are sur-
face points of the TCSO: when first added to the
simplex vertex set we can do this by always gener-
ating them by opposing support vertices, and at the

(]
N
o1

[ X

Figure 6: Estimating MTD for penetrations.

next time step we can check the TC-space vertices
that have remained in the simplex set by hill-climbing
until we do find extremal vertices. Given the vertex
set S = {x; } for the simplex S* then we must have
MTD*(0,TCSO) < min; |x;|. Furthermore, the sim-
plex solver routine (§3.3) can compute the distance
to all of the four bounding faces of S* to compute

MTD*(0,S*), and as O C S* C TCSO we have

MTD*(0,5*) < MTD*(0, TCSO) < min |x;].

This process in illustrated in two dimensions in Fig.
6(a), which shows a TCSO, a triangular simplex S*
within it (shaded), and some other detail which is in-
troduced below. If the origin is at point 1, then the
test suggested finds points a and b, and correctly de-
termines that |a] < MTD* < |b|. The actual value of
MTD? is |c].

In fact we expect to be able to do better than this
in many applications. If we track small changes in rel-
ative position we might see the origin outside of the
TCSO at point 2 in one cycle, and then at nearby
point 3 within the TCSO at the next cycle. (If the ob-
jects are rotating the shape of the TCSO may change
slightly, but that does not affect this argument if the
incremental rotations are small.) In that case the TC-
witness point for S* is point d, which is actually the
TC-witness point for the whole of the TCSO. The test
for whether we have such a case is straightforward,
involving in the worst case two calls to the support
vertex routine which may not be needed if the rou-
tine ‘remembers’ to check whether this surface feature
from the last call to GJK is still a surface feature at
this call.

For deep penetrations such a simple analysis may
not give the true answer. The problem is illustrated
by Fig. 6(b), which shows a sequence of origin points
passing through a TCSO, and in which the TC-witness
point will suddenly move from the left-hand edge to
the right-hand edge (points 3 and 4). The problem is
not convex and therefore naive hill climbing will not
work: [3] solved this problem using a search over all
of the TCSO faces, and [10] solve a related problem
using an approximation to the Voronoi diagram.



6 Conclusions

We have shown experimentally that our enhanced ver-
sion of GJK takes a time that is almost constant for
the tracking problem when there are small changes in
relative configurations. Further, the number of arith-
metic operations required is very close to that pre-
dicted by the theory, namely around 100 multiplica-
tions or divisions for each step of simulated time.

It should also be remembered that the detailed
analysis of the inner loops dealt only in terms of the
number of multiplications and divisions. In fact both
algorithms do significant amounts of index manipula-
tion and real-number addition and subtraction, and
on modern hardware the cost of multiplication and
vector operations do not dominate timings as much
as they did once. This can be seen from the results
shown by looking at the time taken by the algorithm
divided by the number of arithmetic operations that
we recorded. For the algorithm without hill-climbing
that comes out to be around 160ns, whereas the pro-
cessor used is rated at about 11 MFlop which would
indicate an expected time of nearer 100ns. Some of
this discrepancy will be due to the cost of the ad-
ditional machine operations, and on a modern small
computer some of the time will be due to cache misses
and pipeline flushes. These latter effects probably ac-
count for the increase in average time per operation
for the hill-climbing version to around 250-300ns; the
difference in the code for these two methods is tiny.

Finally, note that we have assumed here that the
coordinates of the object vertices are available on de-
mand. Computing these coordinates for all of the ver-
tices would take many more operations than a call to
a single instance of our version of GJK, but on mod-
ern workstations these numbers are computed within
the graphics hardware. It would clearly be possible to
implement a distance routine such as described here in
hardware to provide distance calculations very quickly.
There is a catch though: whereas in visualisation we
usually view from single directions, in simulation we
are likely to want to keep track of distances between
many pairs of objects [10]. Organising this informa-
tion and returned distances, and informing the hard-
ware what object pairs do need tracking, are signifi-
cant hurdles.

Acknowledgements

Thanks are due to Ong Chong Jin and Elmer Gilbert
for discussions on the nature of GJK, and to the EP-
SRC for financial support.

References

[1] Boris Baginski. Local motion planning for manipula-
tors based on shrinking and growing geometry models.
In ICRA, pages 3303-3308, Minneapolis, April 1996.

[2] C. E. Buckley and L. J. Leifer. A proximity metric for
continuum path planning. In 9th Int. Conf. Artificial
Intelligence, pages 10961102, August 1985.

[3] S. A. Cameron and R. K. Culley. Determining the
minimum translational distance between two convex
polyhedra. In Int. Conf. Robotics & Automation,
pages 591-596, San Francisco, April 1986.

[4] Stephen Cameron. A comparison of two fast algo-
rithms for computing the distance between convex
polyhedra. Conditionally accepted, IEEE TR&A,
July 1996.

[5] E. G. Gilbert and C-K Foo. Computing the distance
between general convex objects in three-dimensional
space. IEEE Trans. Robotics & Automation, 6(1):53—
61, February 1990.

[6] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A
fast procedure for computing the distance between
complex objects in three-dimensional space. IEEFE
Trans. Robotics & Automation, 4(2):193-203, April
1988.

[7] E. G. Gilbert and C. J. Ong. New distances for the
separation and penetration of objects. In Int. Conf.
Robotics & Automation, pages 579-586, San Diego,
May 1994.

[8] Ming Lin and John Canny. A fast algorithm for in-
cremental distance calculation. In Int. Conf. Robotics
& Automation, pages 1008-1014, Sacremento, April
1991.

[9] T. Lozano-Pérez. Spatial planning—a configuration
space approach. IFEFE Transactions on Computers,
C-32(2):108-120, February 1983.

[10] M. Ponamgi, D. Manocha, and M. Lin. Incremental
algorithms for collision detection between solid mod-
els. In Proc. ACM/SIGGRAPH Symposium on Solid
Modeling, pages 293-304, 1995.

[11

[l

Caigong Qin, Stephen Cameron, and Alistair
McLean. Towards efficient motion planning for ma-
nipulators with complex geometry. In Proc. IEFE Int.
Symp. Assembly and Task Planning, pages 207-212,
August 1995.

[12] Y. Sato, M. Hirata, T. Maruyama, and Y. Arita.
Efficient collision detection using fast distance-
calculation algorithms for convex and non-convex ob-
jects. In ICRA, pages 771-778, Minneapolis, April
1996.

This paper was prepared for Int. Conf. Robotics
& Automation, Albuquerque, 22-24 April 1997.
© IEEE 1997.

Contact address: Oxford University Computing
Laboratory, Wolfson Building, Parks Road, Ox-
ford OX1 3QD, UK. Phone: +44 1865 273850.

http://www.comlab.ox.ac.uk/~cameron/




