
~ - Computer Graphics, Volume 24, Number 4, August 1990

Particle Animation and Rendering
Using Data Parallel Computation

Karl Sims

Optomystic, 725 N. Highland, Hollywood, CA 90038
Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142

1 Abstract

Techniques are presented that are used to animate and ren-
der particle systems with the Connect ion Machine CM-2, a
data parallel supercomputer . A particle behavior language
provides an an imator with levels of control from kinematic
spllne motions to physically based simulations. A parallel
particle rendering system allows particles of different shapes,
sizes, colors and transparencies to be rendered with anti-
allasing, h idden surfaces, and motion-blur . One vir tual pro-
cessor is assigned to each primitive data element: one to
each particle, and during the rendering process, one to each
pixeLsized particle fragment, and to each pixel. These tools
are used to model dynamic phenomena such as wind, snow,
water, and fire.

2 Introduction

As computers become a more practical tool for visual ex-
pression, modeling and an imat ion systems need to allow for
more abstract , high level instruct ions rather t han requiring
each object and each motion to be specified individually.
Commands such as "make a gust of wind," "drop this ob-
ject," "grow a tree," or even "make this character walk," are
beginning to become £easible [2,6,13,18,21,25,31,32].

Particle systems provide for the creation of complex struc-
ture and motion from a relatively brief abstract description.
They can be used to produce dynamic and "fuzzy" effects
that are dilBcult to achieve with traditional objects made
of surfaces and animated with non-procedural motion [19].
They have previously been used to model fire in the Gene-
sis Effect of Star Trek II [14], trees and grass such as those
shown in Andre and Wally B. [11,20], breaking waves [5,15],
fireworks [30], and other abstract effects in Systeme Partic-
ulier [26]. A 2D particle system was used as part of a fluid
s imulat ion for Jupi ter ' s surface in ~010 [33]. The flocks and
schools in Breaking the Ice might also be considered as par-
ticle systems where each particle is a complex object [27,22].

The Connection Machine (R) CM-2 is a data parallel
computer consisting of between 4K and 64K processors with
up to 32K bytes of memory per processor, and floating point
hardware [8,9,23,29]. A hypercube connection architecture
and special routing hardware allows general communication

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

between processors. A vir tual processor mechanism is used
to simulate more processors than the physical number so
the vir tual machine size can vary depending on the number
of da ta elements in the application. For example, if 32K
particles were created on a CM-2 with 8K physical proces-
sors, a v i r tual processor set with 4 vir tual processors per
processor could contain all 32K particles, one per vir tual
processor. Sets of vir tual processors can be configured into
n-dimensional grids. For example, a 1D vir tual processor
set would be used to represent particles, bu t a 2D vir tual
processor set would be used to represent the pixels of an
image.

Programming a Connect ion Machine system is similar to
progtammlug a single processor except tha t the thousands
of processors all execute the same program at the same time,
each on different data. A parallel language called Starllsp is
used in this work [101. Starllsp is a parallel extension of Lisp
that allows the same power of combinat ion and abstract ion
as Lisp, but consists of parallel instruct ions that operate on
parallel variables.

Because of the parallel na ture of particle systems, they
are well suited for highly parallel computat ion. A parallel
language is convenient to use in bui lding a particle anima-
t ion language, and conversely this system is a good example
of some basic da ta parallel techniques. Instruct ions or rules
of behavior are described as if addressing a single particle,
but they are applied to all particles (or a subset of them) in
parallel. The result of the instruction will usually be differ-
ent for each particle because it uses the state of the particle
to determine its effect.

The three main sections of this paper describe a language
containing some basic tools for animating particles, a system
for rendering 3D particles, and finally, some specific appli-
cations that demonstrate how the animation and rendering
is used to produce some natural phenomena effects.

3 Particle Animation: A Particle Behavior Language

Although many applications of particle an imat ion will still
require their own special software, a general set of tools is
used to create a wide variety of effects. Starlisp and Lisp
provide an envi ronment tha t allows existing particle opera-
tions to be easily combined into new higher level operations.

Physical simulations can create mot ion that is much more
complex and realistic looking than mot ion achieved by mov-
ing objects along spline curves or through keyframes [1,3,7,
12,16,28]. Objects an imated kinematical ly often are not per-
ceived as dynamical ly correct, whereas objects 8nlrnated by
true physical s imulat ion will look correct. However, ending
up with a desired mot ion by specifying only forces and a c -

©1990 ACM -0-89791-344-2/90/098/0405 $00.75 405

SIGGRAPH '90, Dallas, August 6-10, 1990

celerat ions can be very difficult. Jus t as in reali ty, where it
is ha rd to toss a coin and make sure it lands heads up, or
make a legged robot run wi thout falling over, i t is d i ~ c u l t
to predic t the mot ion resul t ing from appl ied forces.

This par t ic le an imat ion sys tem a t t e m p t s to supply sev-
eral levels of opera t ions along the spec t rum between de ta i led
k inemat ic control and physica l ly based s im- la t ion . The goal
is not to s t r ic t ly obey physics and reality, bu t to provide a
range of tools tha t allow a variety of effects to be easily
c rea ted t ha t appear correct.

The equat ions of mot ion for a par t ic le in ~a with pos i t ion
P , veloci ty V and an external ly exer ted accelera t ion A are:

V = Vo + / A d t

P = Po + . / V d t

Euler ' s me thod of in tegra t ion allows the s ta te of the par-
t icle to be u p d a t e d using a s imple approx ima t ion of these
equat ions for a small discrete t ime interval ~ t :

V' = V + A A t

V + V ' .
P' = P + - - - - 7 &t

Al though other me thods of in tegra t ion are known to be more
computa t iona l ly efficient, Euler ' s was chosen for i ts simplic-
i ty and is usual ly sufficient.

A Par t ic le is c rea ted by al locat ing a new CM vi r tua l
processor to conta in the in.formation abou t t ha t par t ic le .
Par t ic les can ei ther be newly created, or c rea ted by dupli-
ca t ing exist ing par t ic les and copying their s ta te . Par t ic les
cam be kil led and removed from their processors to make
those processors available for new part icles .

Each v i r tua l processor in the CM represent ing a par t ic le
contains a d a t a s t ruc ture whose elements are the par t ic le ' s
s ta te variables. A par t ic le has b o t h a head pos i t ion and a
ta i l posi t ion. The head pos i t ion is usual.ly a n i m a t e d and the
t a i l pos i t ion follows along for mot ion blurr ing. The par t i -
cle s t ruc ture also contains o ther variables such as velocity,
radius , color, and opacity.

An ima t ion opera t ions on par t ic les can ei ther ini t ial ize
or a l ter the pos i t ion or velocity of par t ic les . In a pure ly
physical s imulat ion, these values would first be ini t ial ized,
then, for each t ime interval ~ t , the velocity would be a l te red
by ex te rna l accelerat ions such as gravity, and finally the
pos i t ion would be u p d a t e d as shown above. However, for
k inemat ica l ly control led motion, the pos i t ion may be set
directly, regardless of the previous pos i t ion or velocity. I t
is also sometimes useful to set the posi t ion relat ive to the
previous pos i t ion or to a l ter the velocity in ways other t han
app ly ing a simple t r ans la t iona l accelerat ion.

Opera t ions used to move par t ic les are d iv ided into four
categories: those tha t set the posi t ion, those t ha t set the
velocity, those tha t a l ter the pos i t ion or "apply" a velocity,
and those tha t a l ter the velocity or app ly an accelerat ion.
Some examples of each are given in the following sections.

3.1 P o s i t i o n O p e r a t i o n s

The posi t ions of par t ic les can be set in the following ways:

- Randomly wi th in a rec tangular solid.
- Randomly wi th in a sphere.
- R a n d o m l y on the surface of a sphere.

406

- One par t ic le on each ver tex of a polygonal object .
- R a n d o m l y on the surface of a polygonal object .
- 3D Transformat ion from the local coordinates .

These opera t ions are usual ly per formed only once at the
beginning of a par t ic le ' s life, except the 3D t rans fo rmat ion
opera t ion which is usual ly per formed at every frame if used.

3.2 Velocity Initialization Operations

The velocity is usual ly ini t ial ized only once at the s ta r t of
a par t ic le ' s life lmless j e rky mot ion is desired. The veloci ty
of par t ic les can be ini t ia l ized in much the same ways t ha t
the pos i t ion can be ini t ial ized. The commonly used veloci ty
in i t ia l iza t ion opera t ions are:

- In a constant direction.
- R a n d o m l y wi th in a rec tangular solid.
- R a n d o m l y wi th in a sphere.
- R a n d o m l y on the surface of a sphere.

3.3 Applied Velocity Operations

An "appl ied" velocity a l ters the pos i t ion p a r a m e t e r of the
par t ic le depending on the previous posi t ion and affects the
apparen t velocity, bu t does not change the veloci ty pa rame-
ter of the part icle . This allows veloci ty opera t ions and accel-
era t ion opera t ions to act independent ly on par t ic les wi thout
interfering with each other , and can help enable combina t ion
of dynamic s imula t ion with other motion. For example , par -
ticles fall;r ig due to gravi ty might also be moved r andomly
from side to side using appl ied veloci ty operat ions .

Opera t ions t ha t are used to a l ter the pos i t ion or "app ly"
a veloci ty are:

- Trans la te by a constant .
- Rota t e by a constant .
- Scale by a constant .
- Trans la te Randomly.
- Vortex.

3.3.1 The Vortex

The vor tex opera t ion is wor th fur ther descr ipt ion. The pa-
ramete rs given to it are: azis of ro ta t ion , center, magnitude,
and tightne88.

The posi t ions of par t ic les are r o t a t e d abou t the axis
th rough the center of the vortex by an amount dependen t
on thei r d is tance from the center. Higher t ightness causes
the angle of ro ta t ion , 0, to fade more quickly in the rad ia l
direction:

0 - magnitude
Rtlghtnes$

where R is the dis tance from the center of ro ta t ion , and
tightness is usual ly be tween 1.0 and 2.0.

Other opt ions to the vor tex opera t ion are useful. A range
of influence can cause 0 to decrease to zero beyond a cer ta in
distance, and a t r ans la t ion along the vor tex axis t ha t is also
dependent on R can create tornado- l ike motion.

This opera t ion by no means creates a physical s imula-
t ion of a vortex, bu t i t is much easier to create specific dy-
namic fluid-like mot ions using choreographed vortices t h a n
i t would be to s imulate fluid flow th rough complex physi-
cal equat ions. There is of ten a t radeoff be tween a n i m a t o r
control and physica l ly accura te s imulat ions. This vor tex
opera t ion is an example of sacrificing some physical correct-
ness in favor of an ima to r control, while stil l al lowing real is t ic
looking mot ions to be achieved.

~ Computer Graphics, Volume 24, Number 4, August 1990

3.4 Acceleration Operations

Accelerat ion opera t ions a l ter the par t ic le ' s velocity. Forces
can be converted to accelerat ions by: A : F / m . "Acceler-
a t ions" can increment, scale, ro ta te , or reflect the velocities
of part icles. These opera t ions usual ly use other pa rame-
ters of the par t ic le such as posi t ion, velocity, spiral-axis, or
mass to find the accelerat ion and adjus t the velocity. They
can produce a wide var ie ty of interest ing and dynamica l ly
correct- looking motions. Some examples of accelerat ion op-
erat ions are:

- Constant accelerat ion (gravity) .
- R a n d o m acceleration.
- Accelerate towards a point (orbit) .
- Accelerate towards a line.
- Accelerate towards the local coordinates .
- Damp
- Undamp
- Spiral.
- Bounce off a plane.
- Bounce off a sphere.

The first five of these are basic t r ans la t iona l accelerat ions
where the velocity is s imply incremented by the acceleration:
V ' = V + A A t . The accelerat ion can be constant , random, or
may be di rec ted towards a point or a line, and the magni tude
of accelerat ion may depend on the d is tance of the par t ic le ' s
pos i t ion from the poin t or line. For example an acceleration:

O - P
A = 9mo i0 _ pl s

will create inverse-square law orbi ts where 0 is the fixed
center of the orbi t wi th mass too, g is a constant , and P is the
par t ic le posit ion. This equat ion is a form of Newton ' s F =
g m l m 2 / ~ ,2. (In this example the accelerat ion can change
very rapid ly near O, which, unless A t is very small , causes
errors tha t fling the par t ic les out of their orbi ts .)

3.4.1 Damping

A simple approx imat ion to damping is used to s imulate ef-
fects such as air fr iction on part ic les . A decelerat ion propor-
t ional to the current velocity magni tude is appl ied to the
par t ic le in the direct ion of the current velocity. A damp-
ing pa rame te r d typica l ly ranges between 0.0 and 10.0. The
damping decelerat ion is c lamped so as not to reduce the
velocity below a given threshold.

V ~ = V m a r (1 - d A t min(1 .O, t h r e s h o l d . . , "

A more physical ly accurate mode l for damping could be im-
p lemented with damping forces non-l inear ly re la ted to ve-
locity, and not necessari ly p ropor t iona l to mass.

Undamping is used to cause accelerat ion ins tead of de-
celerat ion in the direct ion of the current velocity (d < 0),
and can be per formed on par t ic les below a t l~esho ld value
to smooth ly accelerate t hem to some min imum speed.

3.4.2 The Spiral

Spiral mot ions cont r ibute to many different effects such as
swirling fire or twirl ing snowflakes. Each par t ic le to be spi-
ra led is given a spiral axis which can be ini t ia l ized using the
same set of methods for init ial izing velocities shown above.
The spiral opera t ion causes the velocity vector to be ro t a t ed

Axis

a. b.

Figure 1: Spiral.

about the spiral axis. For a given spiral speed, s, the veloc-
i ty is ro t a t ed by an angle 0 = sz~t, for each t ime interval
At . [See figure la] .

A par t ic le can move in a variety of helix shaped pa ths
depending on the relat ive angle of i ts velocity to i ts spiral
axis [figure lb]. I f they are perpendicu lar the par t ic le will
r emain wi thin a circle. If they are paral le l there will be no
effect. Notice tha t when par t ic les are spiraling, they move
in the general direct ion of plus or minus their spiral axes.

3.4.3 The Bounce

Part ic les can be bounced off pr imi t ive shapes made of planes
and spheres. A simple bounce wi th no energy loss could be
per formed by jus t reflecting the velocity of par t ic les tha t
have passed beyond the bounda ry of the surface by the nor-
mal N:

V ' = V - 2 (V - N)N

This me thod allows par t ic les to pene t r a t e the surface for a t
least one i terat ion, and the effective posi t ion they bounce
from is usual ly slightly below the surface unless many iter-
a t ions are calculated per frame.

A more complete bouncing me thod considers friction and
resilience of the par t ic le and sets the new posi t ion and ve-
loci ty as if the bounce occured exact ly on the surface. Al l
other opera t ions are per formed before any bounce opera-
tions, and the posi t ions are u p d a t e d by the new velocities.
Then, par t ic les are tes ted and bounced off any surfaces tha t
they have pene t ra ted . If a par t ic le has pene t r a t ed a sur-
face a bounced-f lag is set, and the velocity is broken into i ts
normal and tangent ia l components , Vn and Vt:

Vn = (V. N)N

= v - v .

{See figure 2.1 A friction pa ramete r , /~ , reduces the tartgen-
t ia l component , and the normal component is reflected and
scaled by a resilience pa ramete r , e, (bo th can range from 0.0
to 1.0):

v ' = (I - ~) v , - e v ~

If it is desirable to prevent par t ic les from get t ing entirely
s topped by friction, it is necessary to provide a velocity mag-
n i tude value below which friction has no effect.

Par t ic les have b o t h bead and ta i l posi t ions, Ph and Pt,
to be used for mot ion blur. They are bo th fl ipped abou t the
surface to account for the bounce. I f S is any poin t on the
surface:

PL = P . - 2 I (P . - s) . N I N

4O7

SIGGRAPH '90, Dallas, August 6-10, 1990

V'

l!!ii!iiiiiiiii !i iiiiiiiiiiilr
Figure 2: Bounce.

P~ = Pt - 2[(P~ - S) . N] N

The ta i l is also f l ipped because the par t ic le renderer can not
mot ion blur par t ic les wi th kin.ks in their motion. F ina l ly the
ta l l is pul led up to the poin t of contact on the surface so i t
doesn ' t hang below the surface.

Bouncing off spheres is pe r formed in the same way as
bouncing off planes, except N and S are ca lcula ted for the
closest point on the surface of the sphere to the par t ic le . I f
C is the center of a sphere of rad ius r:

Ph - C
Y - - - -

IPh - CI

S - - C ÷ r N

More accura te physical models for bouncing could proba-
b ly be implemented , bu t this m e t h o d is sufficient for creat ing
reasonable bouncing effects.

3.5 Particle Animation Summary

Part ic les have s t a t e variables in add i t ion to pos i t ion and
velocity tha t are used by some an ima t ion opera t ions bu t
not by others. For example: type, age, mass, spiral-axis,
color, opacity, and size can be used. Other spare slots exist
for informat ion such as ini t ia l velocity, a color to fade to, or
an age to die at .

A valuable component of this par t ic le an imat ion sys tem
is a par t ic le preview capabil i ty . Par t ic les can be an ima ted as
shown above, and viewed wi th a quick vector d isplay at near
real t ime speeds. Fas t t u r n a r o u n d t ime for par t ic le mot ion
exper imenta t ion is very helpful.

A n out l ine of an an ima t ion loop for creat ing par t ic le mo-
t ion is as follows:

Crea te part ic les .
Ini t ial ize part ic les .
For each frame:

Set tai ls to previous heads.
For each s imula t ion t ime increment:

Select subset of part ic les .
Per form operat ions .

U p d a t e posi t ions using velocities.
Select subset of part icles .

Per form bounce operat ions .
Adjus t tai ls for mot ion blur shut te r speed.
Render or preview.

408

4 Particle Rendering

This sect ion descr ibes a d a t a para l le l me thod used to render
large numbers of ant i -a l iased, mot ion b lur red par t ic les of
variable sizes, colors, and t ransparencies .

Every par t ic le has a head and a tail , and the following
pa rame te r s are passed f rom the par t ic le an ima t ion sys tem to
the renderer for bo th the head and the ta i l of each par t ic le :

- posi t ion (¢, y, z)
- radius
- color (r, g, b)
- opaci ty

[See figure 3a.]
Mot ion b lur is accomplished by l inearly b lur r ing each

par t ic le independent ly . The an ima t ion sys tem sets the head
and ta i l app rop r i a t e ly for the desired shut te r speed. The
renderer produces a b lu r red s t reak for each par t ic le such
tha t all the pa rame te r s above are in te rpo la ted be tween the
head and the tail .

Al ternat ively, the abi l i ty of the radius, color, and opaci ty
to vary between the head and ta i l of par t ic les , can allow
some variety in par t ic le shape, such as might be used to
approx ima te comets, sparks , or water droplets . [See figure
~.]

Part ic les occupy an a rea in which the opaci ty falls o f f

from 1.0 at the center to 0.0 at the extremes. The func-
t ion tha t de termines the falloff of the opaci ty can vary, and
is used to per form out-of-focus or b lu r ry effects as well as
spa t ia l ant i-al iasing. Linear or Gauss ian shapes are usual ly
used.

The render ing sys tem first t ransforms the par t ic les ' head
and ta l l posi t ions and radi i into screen coordinates . Then it
dices the par t ic les into f ragments (in two stages) such tha t
for each par t ic le there is one f ragment for every pixel t ha t it
will affect. These f ragments containing color, opacity, and
dep th are then sor ted by dep th and the final pixel colors are
calculated. This m e t h o d has s imilar i t ies to a simple a-buffer
polygon render ing a lgor i thm [4], bu t does not use coverage
masks and does not pe r fo rm tex tu r ing or l ighting.

An overview of the render ing process is given below:

U p d a t e par t ic les (an imat ion) .
Transform to screen coordinates .
For each hor izonta l patch:

Determine effective pa tch height.
Dice par t ic les into spans.
For each ver t ica l patch:

Determine effective pa t ch width .
Dice spans into fragments.
Sort f ragments by pixel and depth .
Per form hidden surface calculat ion.
Send colors to pixels.
A d d background color.
O u t p u t pixels.

4.1 Dicing into Fragments

The par t ic le an ima t ion opera t ions descr ibed above only re-
quire a single d a t a type, the par t ic le , to exist in a v i r tua l
processor set wi th in the CM. The render ing system, how-
ever, generates mul t ip le d a t a types as it proceeds. Par t i -
cle spans, par t ic le fragments , and pixels each are c rea ted
in v i r tua l processor sets wi th one d a t a element per v i r tua l
processor.

~ Computer Graphics, Volume 24, Number 4, August 1990

a. Particle

Y i/ J
I~ I
I\ /I
I~I

b. Spa~$

I I " ~ /

i -T/ '
. \

c. Fra

/

/

~.J
~ m e n t s

Figure 3: Particle Dicing.

Firs t , each par t ic le processor de termines the number of
scan lines tha t the par t ic le will occupy and the par t ic le is
diced into spans. Mult iple span processors are a l located for
each par t ic le processor, and the par t ic le informat ion is sent
to them.

Then, each span processor s imilar ly determines the num-
ber of f ragments it will occupy, al locates f ragment processors
and sends the par t ic le informat ion to them.

W h e n par t ic les are diced into fragments, there are often
more to ta l f ragments than will fit into Connect ion Machine
memory. To compensa te for this, the image is rendered in
subsect ions or patches. The size of each pa tch is ad jus ted
such tha t all the fragments in tha t pa tch will fit into memory
at once.

The patch height is chosen before allocating span proces-
sors such that the number of span processors will not exceed
a limit. Likewise, for that horizontal section of the image,
patch widths are chosen such that the number o£ fragment
processors will not exceed a limit for each patch.

It is also desirable to fill as many fragment processors as
possible up to the limit since empty processors sit idle while
the others compute. The processor usage "efllciency" for a
given patch size is the total number of data elements (spans
or fragments) within the patch divided by the maximum
number permitted. The false position method [17] is used
to search for patch widths and heights that result in an
efficient use of span and fragment processors.

After the fragment processors are set for a given patch
size, the color, opacity and depth of that fragment are cal-
culated by finding the closest point to the fragment on the
line between the head and tail of the particle. The particle
radii, depths, colors and opacities are interpolated between
the head and tail to give values at that point. The final frag-
ment opacity is set as a function of the interpolated opacity,
the interpolated radius, and the distance from the center of
the particle.

Spat ia l ant i -a l ias ing of par t ic les is per formed by ramping
the opaci ty to zero near the edges of the part icle , l~adii
below one pixel are c l amped to one pixel and the opaci ty
is lowered to compensa te to prevent aliasing due to sub-
pixel sized part icles. Coverage-masks or mul t ip le samples
per pixel were not used because unlike polygons whose edges
often touch each other to make a continuous surface, the
edges of part icles usual ly do not line up.

4.2 Sorting Fragments and Calculating Transparency

After the color, opaci ty and dep th are ca lcula ted for all the
f ragments in the image pa tch being rendered, the f ragments

are reordered wi thin the CM to make all the f ragments cov-
ering the same pixel adjacent to each other. They are also
sor ted wi thin the pixel groups by depth .

The paral le l opera to r 8can opera tes on values in 1D ar-
rays of processors. I t allows each processor to receive the
sum (or p roduc t) of all the values in the preceding pro-
cessors. A segmented scan can be per formed on groups of
processors to prevent the results from spreading beyond the
group. Local s,m.q and produc ts can be efficiently calcula ted
for groups of processors of variable sizes.

Wi th in each plxel group scan w i th m u l t i p l y is appl ied to
the f ragment ' s t ransparencies from front to back to deter-
mine the to ta l pixel cont r ibut ion of each fragment. Then,
scan w i t h add is appl ied to each color component and the
opacity, each scaled by the f ragment ' s pixel contr ibut ion.
The last processor in each pixel group receives the final pixel
color and opacity.

The pixel colors are then sent to processors in the 2D
image pa tch v i r tua l processor set. Each v i r tua l processor
represent ing one pixel of the image pa tch being rendered
receives the final color and opaci ty from the f ragments cov-
erring it, if any. Background color is added if necessary, and
the pa t ch is finally ou tpu t to a frame buffer or file.

4.3 Mixing with Other Data Types

A recent add i t ion to this sys tem allows par t ic les to be mixed
wi th other renderable d a t a types such as polygons. The frag-
ments of bo th par t ic les and polygons are dep th sor ted to-
gether and rendered simultaneously. This permRs any num-
ber of layers of par t ic les and polygonal objects to move in
front of and behind each other wi th correct h idden surfaces.
This can be preferable to render ing the different d a t a types
separa te ly and then composi t ing the images together after-
wards.

5 Results

The an ima ted film P a r t i c l e D r e a m s [24] was created entirely
using the an imat ion and render ing tools descr ibed above. I t
contains orbi t ing fire, an explosion, a snow storm, a crashing
head, and a waterfall . These tools are also being used in
a commercia l p roduc t ion environment to create "burning
logos," galaxies, and other effects.

5.1 Snow and Wind

A snow s torm was crea ted using white snowflake part icles ,
spirals, and vortices. Some snowflakes were crea ted and
d ropped above the field of view at each i terat ion. They
were given an ini t ia l velocity and sp~a l axis s t ra ight down
bu t wi th some r andom variat ion, and were bounced off the
plane of the ground wi th zero bounce and high friction, so
tha t once they hi t , they stuck. [Figure 6a.]

Gravi ty and air friction were not considered because the
air friction damping and gravi ty would have canceled out at
a s teady cri t ical velocity.

Gusts of wind were made by moving pairs of vortices
across the field of view. A gust procedure was buil t from
two vortex opera t ions so tha t gusts could be moved between
given s ta r t and end posit ions. Gusts were choreographed
and tes ted unt i l the desired swirling effects were achieved.

Final ly, "spla t" shapes were crea ted by dupl ica t ing par-
ticles into several par t ic les when they hit a vert ical plane.

409

@ SIGGRAPH '90, Dallas, August 6-10, 1990

5.3 Fire

Fire s imula t ion is a more complex effect t ha t can be c rea ted
using these tools. Extensions to the ut i l i t ies descr ibed above
allow a rb i t r a ry polygonal objec ts to be burned.

F i rs t , a large number of par t ic les are c rea ted wi th their
ini t ia l posi t ions loca ted on the surface of the object . This
is done by t r i angula t ing the polygons of the objec t and cre-
a t ing some par t ic les r andomly wi thin each tr iangle. To give
an even dis t r ibut ion , the number c rea ted in each t r iangle
is p ropor t iona l to the t r iangle ' s area. The par t ic les ' in i t ia l
velocities and spiral axes are set to direct ions be tween the
ob jec t ' s surface normal and the up-mos t surface tangent vec-
tor to cause the fire par t ic les to hug the surface somewhat
before curl ing up.

Second, several groupings of the par t ic les are created,
and pa rame te r s of color and mot ion are set to be the same
or near ly the same wi th in the groups. Par t ic les are g rouped
in small regions wi th s imilar colors, so different regions of
the surface emit different colored flames as if some regions
are ho t te r t han others. The par t ic les are also g rouped into
flickers. Each par t ic le in a flicker group is given a similar
spiral axes, in i t ia l velocity, s t a r t t ime, and life dura t ion , bu t
wi th slight var ia t ion, so tha t each flicker had some coherency
and was perceived as a uni t , ra ther t h a n each par t ic le being
independen t ly random.

Figure 4: Water .

5.2 Falling Water

A waterfal l was s imula ted by apply ing gravi ty to blue par -
ticles and bouncing t hem off obstacles made of planes and
spheres.

Some water drople t par t ic les were c rea ted on each i ter-
a t ion r andomly wi thin an a rea at the top of the waterfall .
W h e n par t ic les flowed over the last edge at the b o t t o m of the
waterfal l they were recycled back to the top of the waterfal l .
Around 60K par t ic les were used for this an imat ion .

Splashes were achieved by placing spherical rocks of dif-
ferent sizes in the p a t h of the flow. The drople ts were
bounced off the rocks wi th fr ict ion a n d resilience t ha t var-
ied r andomly wi th in a range. W h e n a bounce was de tec ted ,
the par t ic les were tu rned from blue to white and then faded
slowly back to blue as they fell to the next rock. The vari-
e ty of blue to white par t ic les gave the waterfal l a sparkl ing
qual i ty wi thout any ac tua l l ighting calculat ions.

Mot ion b lur was exaggera ted in this sequence: the shut-
ter speed was sl ightly more t han the entire f rame dura t ion
to give the flow a smoother look.

F igure 5: (a) Burning Let ters , (b) Vortex Field.

410

~ Computer Graphics, Volume 24, Number 4, August 1990

Figure 7: Left
(a) Orbiting Fire.
(b) Explosion.

Figure 6
(a) Snowstorm with vortex gust.
(b) Self Breathing Head.
(c) Inverted Tornado.

Figure 8: Waterfall.

41!

StGGRAPH '90, Dallas, August 6-10, 1990

The fire particles leave the surface and spiral upward
while changing color. After they fade and die, they are
recreated again at the initial position on the surface to start
another cycle. The spiral axis slowly rotates to prevent du-
plicate motion, and the flickers have slightly different fire-
quencies to create a pseudo-random rhythm that natural
fire can have.

6 Conclusion

Some general tools for animating and rendering particle sys-
tems are implemented that permit both kinematic and dy-
namic control of particles. They are used to create effects
that would probably be difficult to achieve using traditional
techniques, but there are still many potential additions to
this set of particle system utilities.

Future work in this area might include operations that
cause particles to influence each other: N-body types of sim-
ulations might be used for galaxy simulations, more natural
fluid motion, or collision avoidance. In the current imple-
mentation particles ignore each other and only follow global
rules, sometimes resulting in interpenetration.

More efficient collision detection of surfaces would be
beneficial. Currently every particle is tested against every
surface element. The ability to create procedural motion for
more complex objects (other than particles) including rigid
body dynamic simulations would also be desirable.

It would be interesting to compare the parallel speed of
particle rendering with that of a serial computer. This was
not done because of the unique parallel software implemen-
tation. Rendering speed is approximately proportional to
the number of processors, and inversely proportional to the
number and sizes of the particles. Frame times commonly
vary from several seconds to several minutes.

Since data parallel computers have potential for growth
in both the speed of processors and the number of proces-
sors, they should become more powerful and more available
in the future. Techniques that permit computer animation
of complex structure and motion automatically and can uti-
lize data parallelism, such as those presented here, may soon
be more frequently used.

7 Acknowledgments

Thanks to Lew Tucker for continuing support, Thanks to
all the folks at Whitney/Demos Productions for a unique
learning experience. Thanks to Thinking Machines Corpo-
ration for building Connection Machines computers and be-
ing generous. Thanks to J im Salem, Brewster Kahle, Gary
Oberbrunner, and Peter Schroeder for discussions and en-
couragement. Thanks to J.P.Masser, Jeff Mincy, and Cliff
Lasser for Starlisp and its support. Thanks to Arlene Chung
and Debbie Mahe for layout and figures. And finally, thanks
to John Whitney Jr., Jerry Well, and Optomystic for the en-
vironment to put this work to use.

References

[1] Armstrong, W., Green, M., "The Dynamics of Artic-
ulated Rigid Bodies for Purposes of Animation," Pro-
ceedings Graphics Interface '85, pp. 407-415.

[2] Amburn, P., Grant, E., Whitted, T., "Managing Ge-
ometric Complexity with Enhanced Procedural Meth-
ods," Computer Graphics, Vol. 20, No. 4, August 1986.

412

[3] Burr, A., Barzel, R., "A Modeling System Based on Dy-
namic Constraints," Computer Graphics, Vol. 22, No.
4, 1988, p. 179.

[4] Carpenter, L.C., "The A-buffer, an Anti-aliased Hidden
Surface Method," Computer Graphics, Vol. 18, No. 3,
1984.

[5] Fournier, A., Reeves, W., "A Simple Model of Ocean
Waves," Computer Graphics, Vol. 20, No. 4, 1986, pp.
75-84.

I6] Girard, M., Maeiejewski, A., "Computational Model-
ing for the Computer Animation of Legged Figures,"
Computer Graphics, Vol. 19, No. 3, 1985, pp 263-270.

[7] Hahn, J. K., "Realistic Animation of Rigid Bodies"
Computer Graphics, Vol. 22, No. 4, 1988, p. 299.

[8] HillJs, W. D., The Connection Machine, MIT Press,
1985.

[9] Hillis, W. D., "The Connection Machine," Scientific
American, Vol. 255, No. 6, June 1987.

[10] Lasser, C., Massar, J.P., Miney, J., Dayton, L.,
"Starlisp Reference Manual," Thinking Machines Cor-
poration, 1988

[11] Lucasfilm Ltd, The Adventures of Andre and Wally B.,
(film), August 1984.

[12] Miller, G., "The Motion of Snakes and Worms" Com-
puter Graphics, Vol. 22, No. 4, 1988, p. 169.

[13] Oppenheimer, P. "Real t ime design and animation of
fractal plants and trees. Computer Graphics, Vol. 20,
No. 4, 1986, pp 55-64.

[14] Paramount, Star Trek II: The Wrath off Kahn, Genesis
Demo, also in SIGGRAPH Video Review 1982, ACM
SIGGRAPH, New York.

[15] Peachy, Darwyn R., "Modeling Waves and Surf," Com-
puter Graphics, Vol. 20, No. 4, 1986, pp. 65-84.

[16] Platt , J., Burr, A., "Constraint Methods for Flexible
Models," Computer Graphics, Vol. 22, No. 4, 1988, p.
279.

[17] Press, Flannery, Tenkolsky, and Vetterling, Numerical
Recipes, Cambridge University Press, 1986, p. 248.

[18] Prnsinklewicz, P., Lindenmayer, A., and Hanan, J.,
"Developmental Models of Herbaceous Plants for Com-
puter Imagery Purposes," Computer Graphics, Vol. 22
No. 4, 1988, pp. 141-150.

[19] Reeves, W. T., "Particle Systems - - A Technique for
Modeling a Class of Fuzzy Objects," ACM Transactions
on Graphics, Vol. 2, No. 2, April 1983, reprinted in
Computer Graphics 1983, pp. 359-376.

[20] Reeves, W. T., and Blau, R. Approximate and proba-
bilistic algorithms for shading and rendering structured
particle systems. Computer Graphics, Vol. 19, No. 3,
1985, pp 313-322.

[21] Reffye, P., Edelin, C., Francon J., Jaeger, M., Puech,
C. "Plant Models Faithful to Botanical Structure and
Development," Computer Graphics Vol. 22, No. 4, 1988,
pp 151-158.

' ~ ' Computer Graphics, Volume 24, Number 4, August 1990

[22] Reynolds, Craig W., "Flocks, Herds and Schools: A
Distributed Behavioral Model," Computer Graphics,
Vol. 21, No. 4, July 1987, pp 25-34.

[23] Simon, H.D., Scientific Applications of the Connection
Machine, World Scientific Publishing Co., 1988.

[24] Sims, K., Particle Dreams, SIGGRAPH Video Review
1988, ACM SIGGRAPH, New York.

[25] Smith, A. R., "Plants, Fractals, and Formal Lan-
guages," Computer Graphics, Vol. 18, No. 3, pp. 1-10,
July 1984.

[26] Studio Base 2, Systerne Particulier, Chesnais, Alain,
SIGGRAPH Video Review 1987, ACM SIGGRAPH,
New York.

{27] Symbolics, Stanly and StelIa in Breakin 9 the Ice, SIG-
GRAPH Video Review 1987, ACM SIGGRAPH, New
York.

I28] Terzopoulos, D., Fleischer, K., "Modeling Inelastic De-
formation: Viscoelasticity, Plasticity, Fracture," Corn-
puter Graphics, Vol. 22, No. 4, 1988, p. 269.

[29] Thinking Machines Corporation, Connection Machine
Model CM-2 Technical Summary, technical report, May
1989.

[30] Weil, J., A T & T Bell Labs, Boom Boom Boom, SIG-
GRAPH Video review 1987, ACM SIGGRAPH, New
York.

[31] Wilhelms, J. Barsky, B., "Using Dynamic Analysis for
the Animation of Articulated Bodies Such as Humans
and Robots," Proceedings Graphics Interface '85, pp.
97-104.

[32] Wilhelms~ J., Moore, M., "Collision Detection and Re-
sponse for Computer Animation," Computer Graphics,
Vol. 22, No. 4, 1988, p. 289.

[33] Yaeger, L., Upson, C., "Combining Physical and Visual
Simulation - Creation of the Planet Jupiter for the Film
2010," Computer Graphics, Vol. 20, No. 4, 1986, pp 85-
93.

Figure 1O: (a) Nebula, (b) Solar flyby. Created by Jerry
Weil, Optomytic, for Earth Day Special 1990. (Nebula also
contains surfaces with color and opacity texture mapping.)

Figure 9: Fire Breathing Dragon. Fire was simulated with
particle systems. Dragon by Jerry Weil, Optomystic.

413

