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1 Abstract 

Techniques are presented that  are used to animate  and ren- 
der particle systems with the Connect ion Machine CM-2, a 
data  parallel supercomputer .  A particle behavior language 
provides an an imator  with levels of control from kinematic 
spllne motions to physically based simulations. A parallel 
particle rendering system allows particles of different shapes, 
sizes, colors and  transparencies to be rendered with anti- 
allasing, h idden surfaces, and motion-blur .  One vir tual  pro- 
cessor is assigned to each primitive data  element: one to 
each particle, and during the rendering process, one to each 
pixeLsized particle fragment,  and  to each pixel. These tools 
are used to model dynamic phenomena such as wind, snow, 
water, and  fire. 

2 Introduction 

As computers become a more practical tool for visual ex- 
pression, modeling and  an imat ion  systems need to allow for 
more abstract ,  high level instruct ions rather  t han  requiring 
each object and each motion to be specified individually. 
Commands such as "make a gust of wind," "drop this ob- 
ject," "grow a tree," or even "make this character walk," are 
beginning to become £easible [2,6,13,18,21,25,31,32]. 

Particle systems provide for the creation of complex struc- 
ture and motion from a relatively brief abstract description. 
They can be used to produce dynamic and "fuzzy" effects 
that are dilBcult to achieve with traditional objects made 
of surfaces and animated with non-procedural motion [19]. 
They have previously been used to model fire in the Gene- 
sis Effect of Star Trek II [14], trees and  grass such as those 
shown in  Andre and Wally B. [11,20], breaking waves [5,15], 
fireworks [30], and other abstract  effects in Systeme Partic- 
ulier [26]. A 2D particle system was used as part  of a fluid 
s imulat ion for Jupi ter ' s  surface in ~010 [33]. The flocks and  
schools in Breaking the Ice might also be considered as par- 
ticle systems where each particle is a complex object [27,22]. 

The Connection Machine (R) CM-2 is a data parallel 
computer consisting of between 4K and 64K processors with 
up to 32K bytes of memory per processor, and floating point 
hardware [8,9,23,29]. A hypercube connection architecture 
and special routing hardware allows general communication 
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between processors. A vir tual  processor mechanism is used 
to simulate more processors than  the physical number  so 
the vir tual  machine size can vary depending on the number  
of da ta  elements in the application. For example, if 32K 
particles were created on a CM-2 with 8K physical proces- 
sors, a v i r tual  processor set with 4 vir tual  processors per 
processor could contain all 32K particles, one per vir tual  
processor. Sets of vir tual  processors can be configured into 
n-dimensional  grids. For example, a 1D vir tual  processor 
set would be used to represent particles, bu t  a 2D vir tual  
processor set would be used to represent the pixels of an 
image. 

Programming  a Connect ion Machine system is similar to 
progtammlug a single processor except tha t  the thousands 
of processors all execute the same program at the same time, 
each on different data. A parallel language called Starllsp is 
used in this work [101. Starllsp is a parallel extension of Lisp 
that  allows the same power of combinat ion and  abstract ion 
as Lisp, but  consists of parallel instruct ions that  operate on 
parallel variables. 

Because of the parallel na ture  of particle systems, they 
are well suited for highly parallel  computat ion.  A parallel  
language is convenient to use in  bui lding a particle anima- 
t ion language, and conversely this system is a good example 
of some basic da ta  parallel techniques. Instruct ions or rules 
of behavior are described as if addressing a single particle, 
but they are applied to all particles (or a subset of them) in 
parallel. The result of the instruction will usually be differ- 
ent for each particle because it uses the state of the particle 
to determine its effect. 

The three main sections of this paper describe a language 
containing some basic tools for animating particles, a system 
for rendering 3D particles, and finally, some specific appli- 
cations that demonstrate how the animation and rendering 
is used to produce some natural phenomena effects. 

3 Particle Animation: A Particle Behavior Language 

Although many  applications of particle an imat ion  will still 
require their own special software, a general set of tools is 
used to create a wide variety of effects. Starlisp and Lisp 
provide an  envi ronment  tha t  allows existing particle opera- 
tions to be easily combined into new higher level operations. 

Physical simulations can create mot ion that  is much more 
complex and  realistic looking than  mot ion achieved by mov- 
ing objects along spline curves or through keyframes [1,3,7, 
12,16,28]. Objects  an imated  kinematical ly often are not  per- 
ceived as dynamical ly  correct, whereas objects 8nlrnated by 
true physical s imulat ion will look correct. However, ending 
up with a desired mot ion  by specifying only forces and  a c -  
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celerat ions can be very difficult. Jus t  as in reali ty,  where it 
is ha rd  to toss a coin and make sure it lands heads up, or 
make a legged robot  run  wi thout  falling over, i t  is d i ~ c u l t  
to predic t  the mot ion  resul t ing from appl ied  forces. 

This  par t ic le  an imat ion  sys tem a t t e m p t s  to supply  sev- 
eral  levels of  opera t ions  along the  spec t rum between de ta i led  
k inemat ic  control  and  physica l ly  based  s im- la t ion .  The  goal  
is not  to  s t r ic t ly  obey physics and  reality,  bu t  to  provide a 
range of tools tha t  allow a variety of  effects to be easily 
c rea ted  t ha t  appear  correct.  

The  equat ions of mot ion  for a par t ic le  in ~a with  pos i t ion  
P ,  veloci ty V and  an external ly  exer ted  accelera t ion A are: 

V = Vo + / A d t  

P = Po + . / V d t  

Euler ' s  me thod  of in tegra t ion  allows the  s ta te  of the  par-  
t icle to be u p d a t e d  using a s imple approx ima t ion  of these 
equat ions for a small  discrete t ime interval  ~ t :  

V' = V + A A t  

V + V '  . 
P' = P + - - - - 7  &t 

Al though  other  me thods  of  in tegra t ion  are known to be  more 
computa t iona l ly  efficient, Euler ' s  was chosen for i ts  simplic- 
i ty  and  is usual ly  sufficient. 

A Par t ic le  is c rea ted  by  al locat ing a new CM vi r tua l  
processor  to  conta in  the  in.formation abou t  t ha t  par t ic le .  
Par t ic les  can ei ther  be newly created,  or c rea ted  by  dupli-  
ca t ing exist ing par t ic les  and  copying their  s ta te .  Par t ic les  
cam be kil led and  removed from their  processors to make 
those  processors  available for new part icles .  

Each v i r tua l  processor  in the  CM represent ing a par t ic le  
contains  a d a t a  s t ruc ture  whose elements are  the  par t ic le ' s  
s ta te  variables.  A par t ic le  has  b o t h  a head  pos i t ion  and  a 
ta i l  posi t ion.  The  head  pos i t ion  is usual.ly a n i m a t e d  and  the 
t a i l  pos i t ion  follows along for mot ion  blurr ing.  The par t i -  
cle s t ruc ture  also contains  o ther  variables such as velocity, 
radius ,  color, and  opacity. 

An ima t ion  opera t ions  on par t ic les  can ei ther  ini t ial ize 
or a l ter  the pos i t ion  or velocity of  par t ic les .  In  a pure ly  
physical  s imulat ion,  these values would first be ini t ial ized,  
then,  for each t ime interval  ~ t ,  the velocity would be a l te red  
by  ex te rna l  accelerat ions such as gravity,  and  finally the  
pos i t ion  would be  u p d a t e d  as shown above. However, for 
k inemat ica l ly  control led motion,  the  pos i t ion  may  be set 
directly,  regardless  of the  previous pos i t ion  or velocity. I t  
is also sometimes useful to set the  posi t ion relat ive to  the  
previous pos i t ion  or to a l ter  the  velocity in ways other  t han  
app ly ing  a simple t r ans la t iona l  accelerat ion.  

Opera t ions  used to move par t ic les  are d iv ided  into four 
categories:  those tha t  set the  posi t ion,  those t ha t  set the  
velocity, those tha t  a l ter  the  pos i t ion  or "apply"  a velocity, 
and  those  tha t  a l ter  the  velocity or app ly  an  accelerat ion.  
Some examples  of  each are given in the  following sections. 

3.1  P o s i t i o n  O p e r a t i o n s  

The  posi t ions  of par t ic les  can be set in the  following ways: 

- Randomly  wi th in  a rec tangular  solid. 
- Randomly  wi th in  a sphere.  
- R a n d o m l y  on the  surface of a sphere. 
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- One par t ic le  on each ver tex of  a polygonal  object .  
- R a n d o m l y  on the surface of  a polygonal  object .  
- 3D Transformat ion  from the local coordinates .  

These opera t ions  are usual ly  per formed only once at  the  
beginning of a par t ic le ' s  life, except  the 3D t rans fo rmat ion  
opera t ion  which is usual ly per formed  at  every frame if used. 

3.2 Velocity Initialization Operations 

The velocity is usual ly  ini t ial ized only once at  the  s ta r t  of  
a par t ic le ' s  life lmless j e rky  mot ion  is desired. The  veloci ty  
of par t ic les  can be ini t ia l ized in much the same ways t ha t  
the  pos i t ion  can be ini t ial ized.  The commonly  used veloci ty 
in i t ia l iza t ion opera t ions  are: 

- In  a constant  direction.  
- R a n d o m l y  wi th in  a rec tangular  solid. 
- R a n d o m l y  wi th in  a sphere.  
- R a n d o m l y  on the surface of a sphere. 

3.3 Applied Velocity Operations 

An "appl ied"  velocity a l ters  the  pos i t ion  p a r a m e t e r  of the  
par t ic le  depending  on the previous posi t ion and  affects the  
apparen t  velocity, bu t  does not  change the veloci ty pa rame-  
ter  of  the  part icle .  This  allows veloci ty opera t ions  and  accel- 
era t ion opera t ions  to  act independent ly  on par t ic les  wi thout  
interfering with  each other ,  and  can help enable  combina t ion  
of dynamic  s imula t ion  with  other  motion.  For example ,  par -  
ticles fall;r ig due to  gravi ty  might  also be  moved r andomly  
from side to  side using appl ied  veloci ty operat ions .  

Opera t ions  t ha t  are  used to a l ter  the  pos i t ion  or "app ly"  
a veloci ty are: 

- Trans la te  by  a constant .  
- Rota t e  by  a constant .  
- Scale by  a constant .  
- Trans la te  Randomly.  
- Vortex. 

3.3.1 The Vortex 

The vor tex  opera t ion  is wor th  fur ther  descr ipt ion.  The  pa-  
ramete rs  given to  it are: azis of ro ta t ion ,  center, magnitude, 
and tightne88. 

The  posi t ions  of  par t ic les  are r o t a t e d  abou t  the  axis 
th rough  the center of the  vortex by  an  amount  dependen t  
on thei r  d is tance  from the  center. Higher t ightness  causes 
the  angle of  ro ta t ion ,  0, to fade more  quickly in the  rad ia l  
direction:  

0 -  magnitude 
Rtlghtnes$ 

where R is the  dis tance from the center of  ro ta t ion ,  and  
tightness is usual ly  be tween 1.0 and 2.0. 

Other  opt ions  to  the  vor tex  opera t ion  are useful. A range 
of influence can cause 0 to decrease to zero beyond  a cer ta in  
distance,  and  a t r ans la t ion  along the vor tex  axis t ha t  is also 
dependent  on R can create  tornado- l ike  motion.  

This  opera t ion  by  no means  creates a physical  s imula-  
t ion of a vortex,  bu t  i t  is much easier to  create  specific dy-  
namic  fluid-like mot ions  using choreographed vortices t h a n  
i t  would be  to  s imulate  fluid flow th rough  complex physi-  
cal equat ions.  There  is of ten a t radeoff  be tween a n i m a t o r  
control  and  physica l ly  accura te  s imulat ions.  This vor tex  
opera t ion  is an example  of sacrificing some physical  correct-  
ness in favor of an ima to r  control,  while stil l  al lowing real is t ic  
looking mot ions  to be achieved. 
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3.4 Acceleration Operations 

Accelerat ion opera t ions  a l ter  the  par t ic le ' s  velocity. Forces 
can be converted to accelerat ions by: A : F / m .  "Acceler- 
a t ions"  can increment,  scale, ro ta te ,  or reflect the  velocities 
of part icles.  These opera t ions  usual ly use other  pa rame-  
ters of the par t ic le  such as posi t ion,  velocity, spiral-axis,  or 
mass to find the  accelerat ion and adjus t  the  velocity. They  
can produce a wide var ie ty  of interest ing and dynamica l ly  
correct- looking motions.  Some examples  of accelerat ion op- 
erat ions are: 

- Constant  accelerat ion (gravity) .  
- R a n d o m  acceleration.  
- Accelerate  towards  a point  (orbit) .  
- Accelerate  towards  a line. 
- Accelerate  towards  the  local coordinates .  
- Damp  
- Undamp  
- Spiral.  
- Bounce off a plane. 
- Bounce off a sphere.  

The  first five of these are basic  t r ans la t iona l  accelerat ions 
where the  velocity is s imply incremented  by the acceleration: 
V '  = V + A A t .  The accelerat ion can be  constant ,  random,  or 
may  be di rec ted  towards  a point  or a line, and  the  magni tude  
of accelerat ion may  depend  on the d is tance  of  the  par t ic le ' s  
pos i t ion from the poin t  or line. For  example an  acceleration:  

O - P  
A = 9mo  i0  _ pl  s 

will create inverse-square law orbi ts  where 0 is the  fixed 
center of  the  orbi t  wi th  mass  too, g is a constant ,  and  P is the  
par t ic le  posit ion.  This  equat ion is a form of  Newton ' s  F = 
g m l m 2 / ~  ,2. (In this  example  the  accelerat ion can change 
very rapid ly  near  O, which, unless A t  is very small ,  causes 
errors tha t  fling the  par t ic les  out  of their  orbi ts . )  

3.4.1 Damping 

A simple approx imat ion  to damping  is used to s imulate  ef- 
fects such as air fr iction on part ic les .  A decelerat ion propor-  
t ional  to  the current  velocity magni tude  is appl ied  to the  
par t ic le  in the  direct ion of the  current  velocity. A damp-  
ing pa rame te r  d typica l ly  ranges between 0.0 and 10.0. The 
damping  decelerat ion is c lamped so as not  to reduce the  
velocity below a given threshold.  

V ~ = V m a r (  1 - d A t  min(1 .O,  t h r e s h o l d . .  , " 

A more physical ly  accurate  mode l  for damping  could be im- 
p lemented  with damping  forces non-l inear ly  re la ted  to  ve- 
locity, and  not  necessari ly p ropor t iona l  to  mass. 

Undamping  is used to cause accelerat ion ins tead  of de- 
celerat ion in the direct ion of the current  velocity (d < 0), 
and  can be  per formed on par t ic les  below a t l~esho ld  value 
to  smooth ly  accelerate t hem to some min imum speed. 

3.4.2 The Spiral 

Spiral  mot ions  cont r ibute  to  many  different effects such as 
swirling fire or twirl ing snowflakes. Each par t ic le  to  be spi- 
ra led is given a spiral  axis which can be ini t ia l ized using the  
same set of methods  for init ial izing velocities shown above. 
The  spiral  opera t ion  causes the velocity vector to be ro t a t ed  

Axis  

a. b. 

Figure  1: Spiral.  

about  the  spiral  axis. For a given spiral  speed,  s, the  veloc- 
i ty is ro t a t ed  by an angle 0 = sz~t, for each t ime interval  
At .  [See figure la] .  

A par t ic le  can move in a variety of helix shaped  pa ths  
depending on the relat ive angle of  i ts velocity to i ts spiral  
axis [figure lb].  I f  they  are perpendicu lar  the  par t ic le  will 
r emain  wi thin  a circle. If  they  are paral le l  there  will be no 
effect. Notice tha t  when par t ic les  are spiraling, they  move 
in the  general  direct ion of  plus or minus their  spiral  axes. 

3.4.3 The Bounce 

Part ic les  can be bounced off pr imi t ive  shapes made  of  planes  
and  spheres. A simple bounce wi th  no energy loss could be  
per formed by jus t  reflecting the velocity of par t ic les  tha t  
have passed beyond  the bounda ry  of  the  surface by the nor- 
mal  N:  

V '  = V - 2 ( V -  N)N 

This me thod  allows par t ic les  to  pene t r a t e  the  surface for a t  
least  one i terat ion,  and  the effective posi t ion they  bounce 
from is usual ly  slightly below the surface unless many  iter-  
a t ions are calculated per  frame. 

A more complete  bouncing me thod  considers friction and  
resilience of the  par t ic le  and  sets the  new posi t ion and ve- 
loci ty as if the  bounce occured exact ly  on the surface. Al l  
other  opera t ions  are per formed before any bounce opera-  
tions, and  the posi t ions are u p d a t e d  by  the new velocities. 
Then,  par t ic les  are tes ted  and bounced off any surfaces tha t  
they  have pene t ra ted .  If  a par t ic le  has pene t r a t ed  a sur- 
face a bounced-f lag is set, and  the  velocity is broken into i ts 
normal  and  tangent ia l  components ,  Vn and  Vt: 

Vn = (V. N)N 

= v - v .  

{See figure 2.1 A friction pa ramete r , /~ ,  reduces the  tartgen- 
t ia l  component ,  and  the normal  component  is reflected and  
scaled by a resilience pa ramete r ,  e, (bo th  can range from 0.0 
to  1.0): 

v '  = ( I  - ~ ) v ,  - e v ~  

If  it  is desirable to  prevent  par t ic les  from get t ing entirely 
s topped  by friction, it  is necessary to provide a velocity mag-  
n i tude value below which friction has  no effect. 

Par t ic les  have b o t h  bead  and  ta i l  posi t ions,  Ph and Pt,  
to  be used for mot ion  blur.  They  are bo th  fl ipped abou t  the  
surface to account for the  bounce.  I f  S is any  poin t  on the  
surface: 

PL = P .  - 2 I ( P .  - s ) .  N I N  

4O7 
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V' 
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Figure  2: Bounce. 

P~ = Pt - 2[(P~ - S ) .  N ] N  

The ta i l  is also f l ipped because the par t ic le  renderer  can not  
mot ion  blur  par t ic les  wi th  kin.ks in their  motion.  F ina l ly  the  
ta l l  is pul led  up to the  poin t  of contact  on the  surface so i t  
doesn ' t  hang below the  surface. 

Bouncing off spheres is pe r formed  in the  same way as 
bouncing off planes,  except  N and  S are ca lcula ted  for the  
closest point  on the  surface of the  sphere to  the  par t ic le .  I f  
C is the  center  of a sphere of rad ius  r:  

Ph - C 
Y - -  - -  

IPh - CI 

S - - C ÷ r N  

More accura te  physical  models  for bouncing  could proba-  
b ly  be implemented ,  bu t  this  m e t h o d  is sufficient for creat ing 
reasonable  bouncing  effects. 

3.5 Particle Animation Summary 

Part ic les  have s t a t e  variables in add i t ion  to  pos i t ion  and  
velocity tha t  are used by  some an ima t ion  opera t ions  bu t  
not  by  others.  For  example:  type,  age, mass,  spiral-axis,  
color, opacity,  and  size can be used. Other  spare  slots exist 
for informat ion  such as ini t ia l  velocity, a color to fade to,  or 
an age to die at .  

A valuable  component  of  this  par t ic le  an imat ion  sys tem 
is a par t ic le  preview capabil i ty .  Par t ic les  can be  an ima ted  as 
shown above,  and  viewed wi th  a quick vector  d isplay at  near  
real  t ime speeds.  Fas t  t u r n a r o u n d  t ime for par t ic le  mot ion  
exper imenta t ion  is very helpful.  

A n  out l ine of an  an ima t ion  loop for creat ing par t ic le  mo- 
t ion is as follows: 

Crea te  part ic les .  
Ini t ial ize part ic les .  
For each frame: 

Set tai ls  to previous  heads.  
For each s imula t ion  t ime increment:  

Select subset  of  part ic les .  
Per form operat ions .  

U p d a t e  posi t ions  using velocities.  
Select subset  of part icles .  

Per form bounce operat ions .  
Adjus t  tai ls  for mot ion  blur  shut te r  speed.  
Render  or preview. 
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4 Particle Rendering 

This sect ion descr ibes  a d a t a  para l le l  me thod  used to  render  
large numbers  of ant i -a l iased,  mot ion  b lur red  par t ic les  of  
variable sizes, colors, and  t ransparencies .  

Every par t ic le  has  a head  and  a tail ,  and  the following 
pa rame te r s  are passed f rom the  par t ic le  an ima t ion  sys tem to 
the  renderer  for bo th  the  head  and  the ta i l  of each par t ic le :  

- posi t ion  (¢, y, z) 
- radius  
- color (r,  g, b) 
- opaci ty  

[See figure 3a.] 
Mot ion  b lur  is accomplished by l inearly b lur r ing  each 

par t ic le  independent ly .  The  an ima t ion  sys tem sets the  head  
and  ta i l  app rop r i a t e ly  for the  desired shut te r  speed.  The  
renderer  produces  a b lu r red  s t reak  for each par t ic le  such 
tha t  all  the  pa rame te r s  above are in te rpo la ted  be tween the  
head  and  the  tail .  

Al ternat ively,  the  abi l i ty  of the  radius,  color, and  opaci ty  
to vary between the head  and  ta i l  of par t ic les ,  can allow 
some variety in par t ic le  shape,  such as might  be  used to 
approx ima te  comets,  sparks ,  or water  droplets .  [See figure 
~.] 

Part ic les  occupy an  a rea  in which the opaci ty  falls o f f  

from 1.0 at  the  center  to  0.0 at  the  extremes.  The  func- 
t ion tha t  de termines  the falloff of the  opaci ty  can vary, and  
is used to per form out-of-focus or b lu r ry  effects as well as 
spa t ia l  ant i-al iasing.  Linear  or Gauss ian  shapes  are usual ly  
used. 

The render ing sys tem first t ransforms the par t ic les '  head  
and  ta l l  posi t ions  and  radi i  into screen coordinates .  Then  it 
dices the  par t ic les  into f ragments  (in two stages)  such tha t  
for each par t ic le  there  is one f ragment  for every pixel  t ha t  it  
will affect. These f ragments  containing color, opacity,  and  
dep th  are  then  sor ted  by dep th  and  the  final pixel  colors are 
calculated.  This  m e t h o d  has s imilar i t ies  to a simple a-buffer 
polygon render ing a lgor i thm [4], bu t  does not  use coverage 
masks  and  does not  pe r fo rm tex tu r ing  or l ighting. 

An  overview of the render ing process is given below: 

U p d a t e  par t ic les  (an imat ion) .  
Transform to screen coordinates .  
For each hor izonta l  patch:  

Determine  effective pa tch  height.  
Dice par t ic les  into spans.  
For each ver t ica l  patch:  

Determine  effective pa t ch  width .  
Dice spans into fragments.  
Sort f ragments  by  pixel  and  depth .  
Per form hidden surface calculat ion.  
Send colors to  pixels.  
A d d  background  color. 
O u t p u t  pixels.  

4.1 Dicing into Fragments 

The par t ic le  an ima t ion  opera t ions  descr ibed above only re- 
quire a single d a t a  type,  the par t ic le ,  to  exist in a v i r tua l  
processor  set wi th in  the CM. The  render ing system,  how- 
ever, generates  mul t ip le  d a t a  types  as it  proceeds.  Par t i -  
cle spans,  par t ic le  fragments ,  and  pixels each are  c rea ted  
in v i r tua l  processor sets wi th  one d a t a  element  per  v i r tua l  
processor.  
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a. Particle 
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Figure 3: Particle Dicing. 

Firs t ,  each par t ic le  processor de termines  the  number  of  
scan lines tha t  the  par t ic le  will occupy and the par t ic le  is 
diced into spans.  Mult iple  span  processors are a l located  for 
each par t ic le  processor,  and  the par t ic le  informat ion is sent 
to them. 

Then,  each span processor s imilar ly determines  the  num- 
ber  of f ragments  it  will occupy, al locates  f ragment  processors 
and  sends the  par t ic le  informat ion to them. 

W h e n  par t ic les  are diced into fragments,  there  are often 
more to ta l  f ragments  than  will fit into Connect ion Machine 
memory.  To compensa te  for this,  the image is rendered  in 
subsect ions or patches.  The  size of each pa tch  is ad jus ted  
such tha t  all the fragments  in tha t  pa tch  will fit into memory  
at  once. 

The patch height is chosen before allocating span proces- 
sors such that the number of span processors will not exceed 
a limit. Likewise, for that horizontal section of the image, 
patch widths are chosen such that the number o£ fragment 
processors will not exceed a limit for each patch. 

It is also desirable to fill as many fragment processors as 
possible up to the limit since empty processors sit idle while 
the others compute. The processor usage "efllciency" for a 
given patch size is the total number of data elements (spans 
or fragments) within the patch divided by the maximum 
number permitted. The false position method [17] is used 
to search for patch widths and heights that result in an 
efficient use of span and fragment processors. 

After the fragment processors are set for a given patch 
size, the color, opacity and depth of that fragment are cal- 
culated by finding the closest point to the fragment on the 
line between the head and tail of the particle. The particle 
radii, depths, colors and opacities are interpolated between 
the head and tail to give values at that point. The final frag- 
ment opacity is set as a function of the interpolated opacity, 
the interpolated radius, and the distance from the center of 
the particle. 

Spat ia l  ant i -a l ias ing of par t ic les  is per formed by ramping  
the opaci ty  to zero near  the  edges of the part icle ,  l~adii 
below one pixel are c l amped  to one pixel  and  the opaci ty  
is lowered to compensa te  to prevent  aliasing due to sub- 
pixel sized part icles.  Coverage-masks or mul t ip le  samples 
per  pixel  were not  used because unlike polygons whose edges 
often touch each other  to  make a continuous surface, the  
edges of  part icles  usual ly do not line up. 

4.2 Sorting Fragments and Calculating Transparency 

After  the color, opaci ty  and  dep th  are ca lcula ted  for all the 
f ragments  in the  image pa tch  being rendered,  the f ragments  

are  reordered  wi thin  the CM to make all  the  f ragments  cov- 
ering the same pixel adjacent  to  each other. They  are also 
sor ted  wi thin  the  pixel  groups by depth .  

The  paral le l  opera to r  8can opera tes  on values in 1D ar- 
rays  of processors.  I t  allows each processor to receive the  
sum (or p roduc t )  of  all the  values in the  preceding pro- 
cessors. A segmented scan can be per formed on groups of  
processors to prevent  the  results  from spreading beyond the  
group. Local  s,m.q and produc ts  can be efficiently calcula ted 
for groups of processors of variable sizes. 

Wi th in  each plxel  group scan  w i th  m u l t i p l y  is appl ied  to  
the f ragment ' s  t ransparencies  from front to back to deter-  
mine the  to ta l  pixel  cont r ibut ion  of  each fragment.  Then,  
scan  w i t h  add  is appl ied  to  each color component  and the 
opacity, each scaled by the f ragment ' s  pixel contr ibut ion.  
The last  processor in each pixel group receives the  final pixel  
color and  opacity. 

The pixel  colors are then  sent to processors in the  2D 
image pa tch  v i r tua l  processor set. Each v i r tua l  processor  
represent ing one pixel  of the image pa tch  being rendered 
receives the final color and  opaci ty  from the  f ragments  cov- 
erring it,  if any. Background  color is added  if necessary, and  
the  pa t ch  is finally ou tpu t  to a frame buffer or file. 

4.3 Mixing with Other Data Types 

A recent  add i t ion  to this  sys tem allows par t ic les  to be mixed 
wi th  other  renderable  d a t a  types  such as polygons.  The  frag- 
ments  of bo th  par t ic les  and  polygons are dep th  sor ted  to- 
gether  and  rendered simultaneously.  This permRs any num- 
ber  of  layers of par t ic les  and  polygonal  objects  to move in 
front of  and  behind  each other  wi th  correct h idden surfaces. 
This  can be preferable to render ing the  different d a t a  types  
separa te ly  and then  composi t ing  the  images together  after- 
wards. 

5 Results 

The an ima ted  film P a r t i c l e  D r e a m s  [24] was created entirely 
using the an imat ion  and  render ing tools descr ibed above. I t  
contains orbi t ing fire, an  explosion, a snow storm,  a crashing 
head,  and  a waterfall .  These tools are also being used in 
a commercia l  p roduc t ion  environment  to create  "burning 
logos," galaxies, and  other  effects. 

5.1 Snow and Wind 

A snow s torm was crea ted  using white snowflake part icles ,  
spirals,  and vortices. Some snowflakes were crea ted  and 
d ropped  above the field of  view at each i terat ion.  They  
were given an  ini t ia l  velocity and sp~a l  axis s t ra ight  down 
bu t  wi th  some r andom variat ion,  and  were bounced off the  
plane of the  ground wi th  zero bounce and high friction, so 
tha t  once they  hi t ,  they  stuck. [Figure 6a.] 

Gravi ty  and  air friction were not  considered because the 
air  friction damping  and  gravi ty  would have canceled out at  
a s teady  cri t ical  velocity. 

Gusts  of wind were made  by moving pairs  of vortices 
across the field of view. A gust  procedure  was buil t  from 
two vortex opera t ions  so tha t  gusts  could be moved between 
given s ta r t  and end posit ions.  Gusts  were choreographed 
and tes ted  unt i l  the  desired swirling effects were achieved. 

Final ly,  "spla t"  shapes were crea ted  by dupl ica t ing  par-  
ticles into several  par t ic les  when they  hit  a vert ical  plane.  
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5.3 Fire 

Fire  s imula t ion  is a more complex effect t ha t  can be c rea ted  
using these tools. Extensions  to the  ut i l i t ies  descr ibed above 
allow a rb i t r a ry  polygonal  objec ts  to be  burned.  

F i rs t ,  a large number  of par t ic les  are c rea ted  wi th  their  
ini t ia l  posi t ions loca ted  on the surface of  the  object .  This 
is done by t r i angula t ing  the polygons  of  the  objec t  and  cre- 
a t ing  some par t ic les  r andomly  wi thin  each tr iangle.  To give 
an  even dis t r ibut ion ,  the  number  c rea ted  in each t r iangle  
is p ropor t iona l  to  the  t r iangle ' s  area.  The  par t ic les '  in i t ia l  
velocities and  spiral  axes are set to direct ions be tween the 
ob jec t ' s  surface normal  and  the  up-mos t  surface tangent  vec- 
tor  to  cause the  fire par t ic les  to hug the surface somewhat  
before curl ing up.  

Second, several  groupings of the  par t ic les  are  created,  
and  pa rame te r s  of color and  mot ion  are set to be  the  same 
or near ly  the  same wi th in  the  groups.  Par t ic les  are  g rouped  
in small  regions wi th  s imilar  colors, so different regions of 
the  surface emit  different colored flames as if  some regions 
are  ho t te r  t han  others.  The  par t ic les  are  also g rouped  into 
flickers. Each par t ic le  in a flicker group is given a similar  
spiral  axes, in i t ia l  velocity, s t a r t  t ime,  and  life dura t ion ,  bu t  
wi th  slight var ia t ion,  so tha t  each flicker had  some coherency 
and  was perceived as a uni t ,  ra ther  t h a n  each par t ic le  being 
independen t ly  random.  

Figure  4: Water .  

5.2 Falling Water 

A waterfal l  was s imula ted  by apply ing  gravi ty  to blue par -  
ticles and  bouncing t hem off obstacles  made  of  planes  and  
spheres. 

Some water  drople t  par t ic les  were c rea ted  on each i ter-  
a t ion  r andomly  wi thin  an a rea  at  the  top of  the  waterfall .  
W h e n  par t ic les  flowed over the  last  edge at  the  b o t t o m  of  the  
waterfal l  they  were recycled back to the  top  of the  waterfal l .  
Around  60K par t ic les  were used for this  an imat ion .  

Splashes were achieved by  placing spherical  rocks of dif- 
ferent sizes in the  p a t h  of the  flow. The  drople ts  were 
bounced  off the  rocks wi th  fr ict ion a n d  resilience t ha t  var- 
ied r andomly  wi th in  a range.  W h e n  a bounce was de tec ted ,  
the  par t ic les  were tu rned  from blue to white  and  then  faded 
slowly back to blue as they  fell to the  next  rock. The  vari- 
e ty  of  blue to  white par t ic les  gave the  waterfal l  a sparkl ing  
qual i ty  wi thout  any ac tua l  l ighting calculat ions.  

Mot ion  b lur  was exaggera ted  in this  sequence: the  shut-  
ter  speed was sl ightly more t han  the entire f rame dura t ion  
to give the  flow a smoother  look. 

F igure  5: (a) Burning  Let ters ,  (b) Vortex Field.  
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Figure 7: Left 
(a) Orbiting Fire. 
(b) Explosion. 

Figure 6 
(a) Snowstorm with vortex gust. 
(b) Self Breathing Head. 
(c) Inverted Tornado. 

Figure 8: Waterfall. 
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The fire particles leave the surface and spiral upward 
while changing color. After they fade and die, they are 
recreated again at the initial position on the surface to start 
another cycle. The spiral axis slowly rotates to prevent du- 
plicate motion, and the flickers have slightly different fire- 
quencies to create a pseudo-random rhythm that natural 
fire can have. 

6 Conclusion 

Some general tools for animating and rendering particle sys- 
tems are implemented that  permit both kinematic and dy- 
namic control of particles. They are used to create effects 
that  would probably be difficult to achieve using traditional 
techniques, but there are still many potential additions to 
this set of particle system utilities. 

Future work in this area might include operations that 
cause particles to influence each other: N-body types of sim- 
ulations might be used for galaxy simulations, more natural  
fluid motion, or collision avoidance. In the current imple- 
mentation particles ignore each other and only follow global 
rules, sometimes resulting in interpenetration. 

More efficient collision detection of surfaces would be 
beneficial. Currently every particle is tested against every 
surface element. The ability to create procedural motion for 
more complex objects (other than particles) including rigid 
body dynamic simulations would also be desirable. 

It would be interesting to compare the parallel speed of 
particle rendering with that of a serial computer. This was 
not done because of the unique parallel software implemen- 
tation. Rendering speed is approximately proportional to 
the number of processors, and inversely proportional to the 
number and sizes of the particles. Frame times commonly 
vary from several seconds to several minutes. 

Since data parallel computers have potential for growth 
in both the speed of processors and the number of proces- 
sors, they should become more powerful and more available 
in the future. Techniques that  permit computer animation 
of complex structure and motion automatically and can uti- 
lize data parallelism, such as those presented here, may soon 
be more frequently used. 
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Figure 1O: (a) Nebula, (b) Solar flyby. Created by Jerry 
Weil, Optomytic, for Earth Day Special 1990. (Nebula also 
contains surfaces with color and opacity texture mapping.) 

Figure 9: Fire Breathing Dragon. Fire was simulated with 
particle systems. Dragon by Jerry Weil, Optomystic. 
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