Radiosity

Classic radiosity = finite element method
Assumptions

m Diffuse reflectance

m Usually polygonal surfaces
Advantages

m Soft shadows and indirect lighting

m View independent solution

= Precompute for a set of light sources

m Useful for walkthroughs

CS348B Lecture 17 Pat Hanrahan, Spring 2002

Early Radiosity

From Goral, Torrance, Greenberg, Battaile 1984
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Early Radiosity

From Cohen, Chen, Wallace and Greenberg 1988
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First Radiosity Pictures ...

Parry Moon and Domina Spencer (MIT), Lighting Design, 1948
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Finite Element Method

The Radiosity Equation

Assume diffuse reflection only

Solve for radiosity (2D function)

B(X) = B.(X) + p(X)E(X)

B(x) = Be(x)+p(x)j F(x,x")B(x") dA’

_ cosé cost’

F(x,X) V (X, X"

7= x|
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Classic Radiosity Algorithm

y

Mesh Surfaces into Elements

'

Compute Form Factors
Between Elements

'

Solve Linear System
for Radiosities

'

Reconstruct and Display
Solution

!
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Simple Room Scene

Table in room sequence from Cohen and Wallace
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Basic Functions

Piecewise constant basis functions

N; (x)

Express radiosity as sum of basis functions

B(x) = Z BN, (x) Constant radiosity assumption
B,() = Y EN,(X)
p(X) = Zpi N; (x)
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Derivation

Convert integral equation to matrix equation

B(x) = B,(X) + p(X) J. F(x, X ZBij(x’) dA’

M2

S BN() =Y BN (X)+ AN(X) [Z B, | F(x,x')NJ(x')dA']

[ Y BN =2 BN+ AN () {Z By [ F(x X)N;(x) dA’DdA

BA =EA +p, 2 B[ [ F(xX)N,(x)N;(x) dAdA
] A A
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Form Factor

Form Factor

A UzAiji:”cose cosé? X) dAdA
wh 7l

Summation dF=
j

Form factor is the percentage of light leaving i
that makes it to |
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Classic Radiosity

Power balance

BA=EA +/).ZBJAFU-

3 EI +pz ij )
Linear system of equations
1-pk, -pF, - -pR, (B E

-pFn 1-pF, - -pFy | B _ E
_pnFnl _pnFnZ 1_pnan Bn En
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Form Factors

Hemicube Algorithm

First radiosity algorithm to deal with occlusion

1. Render scene from the point of view of each
vertex/element

2. Cpml:;ute delta form factors - contribution from each
pixe

Render source elements from
POV of receiving element

F
LT
i 195
= H o FdA‘ A AR,
- PA
Typical resolution: 32x32
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Hemicube Delta Form Factors

Fi Z
r={x’+y +1 r=yl+y’+2
v 1

‘ ] f .

COSp = —— 1
[ 2 2 COSPp = ——
Xy +l J1+y?+ 7

AEu.
4

~.

AA AA
BRI Y] AF=————=
7(X“+y“ +1) 7(l+y +2°)
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Hemicube Algorithms

Advantages
+ First practical method -> Patent!
+ Use existing rendering systems; Hardware

+ Computes row of form factors in O(n)
Disadvantages
- Computes differential-finite form factor

- Aliasing errors due to sampling
Randomly rotate/shear hemicube

- Proximity errors
- Visibility errors
- Expensive to compute a single form factor
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Solving

Solve [F][B] = [E]

Direct methods: O(n3)

m Gaussian elimination

Goral, Torrance, Greenberg, Battaile, 1984

Iterative methods: O(n?)

Energy conservation
— diagonally dominant — iteration converges
m Gauss-Seidel, Jacobi: Gathering

Nishita, Nakamae, 1985
Cohen, Greenberg, 1985

m Southwell: Shooting
Cohen, Chen, Wallace, Greenberg, 1988
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Gathering

P A
|
|
A

Row of F times B

for(i=0; i<n; i++)
Bl[i] = Be[i];

whi l e( !converged ) {
for(i=0; i<n; i++) {
E[i] =0;
for(j=0; j<n; j++)
E[i] += F[iT[i1*B[j];
B[i] = Be[i]+rho[i]*E[i];
}

}

Calculate one row of F and discard
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Successive Approximation
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Shooting

for(i=0; i<n; i++) {
B[i] = dB[i] = Be[i];
whi l e( !converged ) {
set i st dB[i] is the largest;
for(j=0;j<n;j++)
ifCit=j) {
db =rho[j]*F[j][i]*dB[i];
dB[j] += db;
B[j] += db;
}
dB[i]=0;

Brightness order

Column of F times B
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Progressive Radiosity

(a) Traditional Gauss-Seidel iteration of 1, 2, 24 and 100.
(b) Progressive Refinement (PR) iteration of 1, 2, 24 and 100.

From Cohen, Chen, Wallace, Greenberg 1988
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Meshing

Accuracy

Reference Solution Uniform Mesh

Table in room sequence from Cohen and Wallace
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Artifacts

A. Blocky shadows Error Image
B. Missing features

C. Mach bands

D. Inappropriate shading discontinuities

E. Unresolved discontinuities
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Increasing Resolution
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Adaptive Meshing
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Discontinuity Mesh

From Baum et al.
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Discontinuity Mesh
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Discontinuity Meshing

From Lischinski, Tampieri, Greenberg 1992
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Hierarchical Radiosity

A =——
N 7
y Lé/>
=
N
-
N
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Summary

Remember assumptions

m Diffuse reflectance

m Polygons

Difficult to relax assumptions
Computation challenges

m Meshing

s Complex input geometry
s Complexity due to shadows

= Dense coupling
m O(n?) matrix elements

= HR leads to O(n) algorithm (ignoring discontinuities)
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