
Announcments

•  Sign up for crits!

Reading for Next Week

•  FvD 16.1-16.3 – local lighting models
•  GL 5 – lighting
•  GL 9 (skim) – texture mapping

Modern Game Techniques

CS248 Lecture Nov 13
Andrew Adams

Overview

•  The OpenGL Pipeline

•  Vertex and Fragment Shaders

•  Multipass Techniques

•  Culling and Collision Detection

The OpenGL Pipeline

glBegin(GL_TRIANGLES);

glTexCoord2i(0, 0);

glNormal3f(0, 0, 1);

glColor3f(1, 0, 0);

glVertex3f(0, 0, 0);

glTexCoord2i(0, 1);

glColor3f(0, 1, 0);

glVertex3f(0, 1, 0);

glTexCoord2i(1, 0);

glColor3f(0, 0, 1);

glVertex3f(1, 0, 0);

glEnd();

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterization

Texturing

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterization

Texturing

Vertices with:
Colors

Texture coords

Normals

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterization

Texturing

Vertices in eye coords
with:
Colors

Texture coords

Normals in eye coords

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterization

Texturing

Vertices in eye coords
with:

Lit colors

Texture coords

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterization

Texturing

Vertices in clip coords
with:

Lit colors

Texture coords

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterization

Texturing

Fragments with:
Interpolated colors

Interpolated texture coords

The OpenGL Pipeline

Modelview Transform

Lighting

Perspective Transform

Rasterize + Interpolate

Texturing Fragments with:
Colors

Texture
Memory

The OpenGL Pipeline with Shaders

Vertex Shader

Rasterize + Interpolate

Fragment Shader

The OpenGL Pipeline with Shaders

Vertex Shader

Rasterize + Interpolate

Fragment Shader

Small programs that run on
the graphics card

The OpenGL Pipeline with Shaders

Vertex Shader

Rasterize + Interpolate

Fragment Shader

Vertices with:
Colors

Texture coords

Normals

The OpenGL Pipeline with Shaders

Vertex Shader

Rasterize + Interpolate

Fragment Shader

Transformed Vertices
with:

(Anything you want here, eg
normals, colors, texture coords)

Texture
Memory

The OpenGL Pipeline with Shaders

Vertex Shader

Rasterize + Interpolate

Fragment Shader

Fragments with:
(Interpolated values from

previous stage)

The OpenGL Pipeline with Shaders

Vertex Shader

Rasterize + Interpolate

Fragment Shader Fragments with:
Colors

Texture
Memory

How many times are the fragment and
vertex shaders executed on this scene

Vertex shader runs once per vertex

Vertex shader runs once per vertex

Fragment shader
runs once per pixel

Vertex Shader

void main() {

 gl_Position = gl_Vertex;

}

Fragment Shader

void main() {

 gl_FragColor = vec4(1, 0, 0, 1);

}

Vertex Shader

void main() {

 gl_Position = gl_Vertex;

}

Fragment Shader

void main() {

 gl_FragColor = vec4(1, 0, 0, 1);

}

Note:

Ignores modelview and
projection matrices

GLSL Types

•  Float types:
–  float, vec2, vec3, vec4, mat2, mat3, mat4

•  Bool types:
– bool, bvec2, bvec3, bvec4

•  Int types:
–  int, ivec2, ivec3, ivec4

•  Texture types:
– sampler1D, sampler2D, sampler3D

GLSL Types

•  A variable can optionally be:
– Const
– Uniform

• Can be set from c, outside glBegin/glEnd

– Attribute
• Can be set from c, per vertex

– Varying
• Set in the vertex shader, interpolated and used in

the fragment shader

Vertex Shader
attribute float vertexGrayness;

varying float fragmentGrayness;

void main() {

 gl_Position = gl_Vertex;

 fragmentGrayness = vertexGrayness

}

Fragment Shader
uniform float brightness;

varying float fragmentGrayness;

void main() {

 const vec4 red = vec4(1, 0, 0, 1);

 const vec4 gray = vec4(0.5, 0.5, 0.5, 1);

 gl_FragColor = brightness * (red * (1 – fragmentGrayness) +

 gray * fragmentGrayness);

}

Vertex Shader
attribute float vertexGrayness;

varying float fragmentGrayness;

void main() {

 gl_Position = gl_Vertex;

 fragmentGrayness = vertexGrayness

}

Fragment Shader
uniform float brightness;

varying float fragmentGrayness;

void main() {

 const vec4 red = vec4(1, 0, 0, 1);

 const vec4 gray = vec4(0.5, 0.5, 0.5, 1);

 gl_FragColor = brightness * (red * (1 – fragmentGrayness) +

 gray * fragmentGrayness);

}

Set once per vertex,
like color, normal, or
texcoord.

Vertex Shader
attribute float vertexGrayness;

varying float fragmentGrayness;

void main() {

 gl_Position = gl_Vertex;

 fragmentGrayness = vertexGrayness

}

Fragment Shader
uniform float brightness;

varying float fragmentGrayness;

void main() {

 const vec4 red = vec4(1, 0, 0, 1);

 const vec4 gray = vec4(0.5, 0.5, 0.5, 1);

 gl_FragColor = brightness * (red * (1 – fragmentGrayness) +

 gray * fragmentGrayness);

}

Set once per polygon,
outside glBegin/glEnd

Vertex Shader
attribute float vertexGrayness;

varying float fragmentGrayness;

void main() {

 gl_Position = gl_Vertex;

 fragmentGrayness = vertexGrayness

}

Fragment Shader
uniform float brightness;

varying float fragmentGrayness;

void main() {

 const vec4 red = vec4(1, 0, 0, 1);

 const vec4 gray = vec4(0.5, 0.5, 0.5, 1);

 gl_FragColor = brightness * (red * (1 – fragmentGrayness) +

 gray * fragmentGrayness);

}

Matching Declarations

Vertex Shader
attribute float vertexGrayness;

varying float fragmentGrayness;

void main() {

 gl_Position = gl_Vertex;

 fragmentGrayness = vertexGrayness

}

Fragment Shader
uniform float brightness;

varying float fragmentGrayness;

void main() {

 const vec4 red = vec4(1, 0, 0, 1);

 const vec4 gray = vec4(0.5, 0.5, 0.5, 1);

 gl_FragColor = brightness * (red * (1 – fragmentGrayness) +

 gray * fragmentGrayness);

}

Set at each vertex in
vertex shader

Interpolated in hardware

Available in fragment
shader

Creating your own shaders

•  Get at the extension functions
– use glew http://glew.sourceforge.net/

•  Load the shaders as strings
•  Compile them
•  Link them into a ‘program’
•  Enable the program
•  Draw something
•  (Live Demo)

References

•  A great tutorial and reference:
– http://www.lighthouse3d.com/opengl/glsl/

•  The spec for GLSL, includes all the
available builtin functions and state:
– http://www.opengl.org/documentation/glsl/

•  The OpenGL ‘orange book’ on shaders is
also good

Multipass Techniques

•  Many cool effects are easier to achieve by
rendering the scene multiple times:

– Render the scene
– Read the scene into a texture
– Render that texture on the screen in some

interesting way

Motion Blur

1) T = empty texture
2) Render a slightly dimmed T
3) Render the scene
4) Copy the framebuffer into T
5) Goto 2

(Live Demo)

Motion Blur: Two Questions

•  Question 1: What’s incorrect about this
motion blur?

(from a sampling point of view)

•  Question 2: How could this be modified to
make a zoom blur?

Sharpen Filter

•  Render the scene
•  Save it as a texture
•  Render the texture, using a shader to

convolve the image

(Live Demo)

Reflections

Eye

Scene

Mirror

Reflections

Eye

Scene

Mirror

Reflected Eye

Reflections

•  Reflect the eye about the plane of the
mirror

•  Render a view from that point, with
frustum subtended by the mirror.

•  Save the framebuffer into a texture
•  Render the scene as normal, placing that

texture over the mirror

Question

•  How could you use multipass rendering,
vertex, and fragment shaders to render a
pond with ripples that reflects a cloudy
sky?

Question

•  How did I do this?
– 4 quads, 3 are texture mapped
– 1 shader
– 2 framebuffer sized textures

(Live Demo)

Collision Detection and Culling

•  The collision detection problem:
– Given n objects with arbitrary shapes and

positions, efficiently detect which objects
intersect with which other objects.

– O(n2) is bad
– O(n ln(n)) is good

Collision Detection and Culling

•  The frustum culling problem:
– Given n objects with arbitrary shapes and

positions, efficiently detect which objects
intersect with the viewing frustum.

– O(n) is bad
– O(ln(n)) is good

•  Frustum culling is a special case of
collision detection – collision with the
frustum

Portal Culling

•  Your world is divided into cells, with
rectangular doorways between the cells.

Cell A Cell B

Eye

Portal Culling

•  From cell A, what’s visible in cell B?

Cell A Cell B

Eye

Portal Culling

•  This is just frustum culling against the
frustum subtended by the portal.

Cell A Cell B

Eye

Portal Culling

•  Some objects in C are NEVER visible from
anywhere in A

Cell A Cell B

Eye

Cell C

Portal Culling

•  For all pairs of cells x, y, precompute the set of
objects in cell x that could be seen from cell y.
Draw only them.

Cell A Cell B

Eye

Cell C

Collision Detection and Culling

•  Frustum Culling and portal culling are just
collision detection against frustums.

•  A good collision detection framework
solves these culling problems for you.

Collision Detection Simplified

•  Check (cheaply) against bounding volumes
– spheres or boxes

•  If they collide, do the expensive check

Hard Easy

Collision Detection Simplified

•  Why do you think spaceships in computer
games have spherical shields?

Hard Easy

Collision Detection = Sorting

•  What’s a good collision detection algorithm
for line segments of constant width in 1D?

Collision Detection = Sorting

•  Sort by min x, then scan along, checking
backwards until max x of the earlier
polygon < min x of this polygon

•  Complexity O(n ln(n))
•  Still works for segments of varying width?

min x max x

Collision Detection = Sorting

•  Algorithm 1:
–  Sort all your bounding spheres along an arbitrary

direction, eg z
–  Scan along the list, checking sphere/sphere distance

between each sphere and the previous k
–  For spheres that collide, do more expensive polygon/

polygon checks (for culling we can be conservative
and skip expensive checks).

•  Only works if spheres have known max size, and
are small. Otherwise k = O(n)

Collision Detection = Sorting

•  Algorithm 2: Bucket sorting
– Make a big array of cells for all space
– Put a reference to each sphere in each cell it

intersects (O(1) cells)
– Traverse all the cells, looking for cells with

more than one thing in them, do more
accurate comparisons on those things.

Collision Detection = Sorting

•  Algorithm 2: Bucket sorting
– Have to be careful to avoid double counting

collisions
– Can rasterize large objects like frustums into

the cells using a 3D rasterizer algorithm
– Complexity = number of cells
– Small cells make each object appear in many

cells - inefficient
– Large cells may have many objects per cell

Collision Detection = Sorting

•  Algorithm 3: Hierachical bucket sorting
– Apply algorithm 2 on n objects with k large

cells
– Each cell has O(n/k) objects in it that we need

to check for collisions
– Recurse with smaller cells!
– If few objects in a cell, don’t bother recursing

Collision Detection = Sorting

•  k = 8
–  ‘octtree collision detection’
– Divide each cell in half in x, y, and z

•  k = 2
–  ‘kd-tree collision detection’
– Divide each cell in two in x OR y OR z
– Doesn’t necessarily divide in half

•  Both are good

Temporal Coherency

•  We don’t want to recreate this whole
recursive data structure every frame

•  Static objects need not be reinserted every
frame

•  Moving objects don’t jump around at
random, so you can be clever about
moving them in the tree
– O(1) insert cost instead of O(ln(n))

Low level collision detection

•  You’ve detected two objects might collide
based on bounding volumes... now what?

•  A) Triangle vs triangle tests for each pair
of triangles in the objects.
– Tedious algorithm, look it up online

•  B) Nearly collided is good enough
– Culling
– Arcade game collision detection

Fast Objects

•  Quickly moving objects might jump over
each other:

1 2 3 4

1

2

3

Fast Objects

•  This is a sampling problem. Test collisions
against motion blurred object shapes
instead.

1 2 3 4

1

2

3

Fast Objects

•  Use shortest distance between two line
segments, or ellipsoids, or larger bounding
spheres.

1 2 3 4

1

2

3

Fast Objects

•  Solve for precise time to do good physics
calculations

1 2 3 4

1

2

3

t = ?

Fast Objects

•  Alternative solution: Up the sampling rate
– Do many physics time steps per drawn frame

1 2 3 4

1

2

3

Detail Culling/LOD

•  Things that are far away need not be
drawn well
– Use simplified meshes, simpler shaders, etc

Detail Culling/LOD

•  Things that are far away need not be
drawn well
– Use simplified meshes, simpler shaders, etc

Detail Culling/LOD

•  You need to transition between different
levels of details

•  As an object approaches you can
– Pop from one model to the next

• most games do this

– Alpha blend from one model to the next
– Subdivide polygons and morph into the new

shape
• Dynamic meshes are expensive!

3 Most Important Things?

Challenge

•  How would you implement a rippling pond
that accurately reflects the entire world,
including near objects, far objects, and the
sky?

