
CS 248
OpenGL Help Session

CS248CS248
Presented by Zak Middleton, Billy ChenPresented by Zak Middleton, Billy Chen
Stanford UniversityStanford University
Nov. 8, 2002Nov. 8, 2002

2

Overview

•• Basic primitives and rendering in OpenGLBasic primitives and rendering in OpenGL
•• Transformations and viewingTransformations and viewing

•• GLUT and the interaction / display loopGLUT and the interaction / display loop
•• More primitives and renderingMore primitives and rendering

•• Development tipsDevelopment tips

Note: all page references refer to the OpenGL Programming Guide, 3rd Edition ver. 1.2
(aka “The Red Book”) unless noted otherwise.

3

Getting Started…

•• OpenGL is a cross platform 3D graphics library that takes OpenGL is a cross platform 3D graphics library that takes
advantage of specialized graphics hardware.advantage of specialized graphics hardware.

•• Read the Red Book! It’s a great resource and is very readable.Read the Red Book! It’s a great resource and is very readable.

•• OpenGL is a OpenGL is a statestate machine: polygons are affected by the current machine: polygons are affected by the current
color, transformation, drawing mode, etc.color, transformation, drawing mode, etc.

Two scenes rendered with a shading language developed at Stanford.

4

Specifying Object Vertices (Ch.2 p.42)

•• Every object is specified by verticesEvery object is specified by vertices
glVertex3f (2.0, 4.1, 6.0); // specifies a vertex at the x, y, z coordinate (2.0, 4.1, 6.0).

// The “3f” means 3 floating point coordinates.

• Other examples:

glVertex2i (4, 5); // 2 integers for x and y. z = 0.
glVertex3fv (vector); // float vector[3] = {5.0, 3.2, 5.0};

•• Current color affects any verticesCurrent color affects any vertices
• glColor3f (0.0, 0.5, 1.0); // no Red, half-intensity Green, full-intensity Blue

•• Vertices are specified only between Vertices are specified only between glBegin(glBegin(modemode)) and and glEndglEnd()(), ,
usually in a counterusually in a counter--clockwise order for polygons.clockwise order for polygons.
• glBegin (GL_TRIANGLES);

glVertex2i (0, 0);
glVertex2i (2, 0);
glVertex2i (1, 1);

glEnd();

5

Primitive Types in glBegin (Ch.2, p.44)

•• PointsPoints GL_POINTSGL_POINTS

•• LinesLines GL_LINES, GL_LINE_STRIP, GL_LINE_LOOPGL_LINES, GL_LINE_STRIP, GL_LINE_LOOP

•• TrianglesTriangles GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FANGL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN

•• QuadsQuads GL_QUADS, GL_QUAD_STRIPGL_QUADS, GL_QUAD_STRIP

•• PolygonsPolygons GL_POLYGONGL_POLYGON

(show page 45)

glBegin(GL_LINES);
[lots of glVertex calls];

glEnd();

glBegin(GL_QUADS);
[lots of glVertex calls];

glEnd();

6

Transformations and Viewing (Ch.3)

OpenGL has 3 different matrix modes:OpenGL has 3 different matrix modes:
• GL_MODELVIEW

• GL_PROJECTION

• GL_TEXTURE

• For example, choose to act on the projection matrix with:

glMatrixMode(GL_PROJECTION);

•• The The ModelviewModelview matrix is used for your object transformations.matrix is used for your object transformations.

•• The The ProjectionProjection matrix sets up the perspective transformation. It is matrix sets up the perspective transformation. It is
usually set once at the beginning of your program.usually set once at the beginning of your program.

•• The The TextureTexture matrix can be used to warp textures (not commonly matrix can be used to warp textures (not commonly
used).used).

7

OpenGL: Modelview matrix

•• Transforms the viewpoint and objects within the scene.Transforms the viewpoint and objects within the scene.
•• Example:Example:

glMatrixMode(GL_MODELVIEWglMatrixMode(GL_MODELVIEW););// set the current matrix// set the current matrix

glLoadIdentityglLoadIdentity();(); // load the identity matrix// load the identity matrix

glTranslatef(10.5, 0, 0);glTranslatef(10.5, 0, 0); // translate 10.5 units along x// translate 10.5 units along x--axisaxis

glRotatef(45, 0, 0, 1);glRotatef(45, 0, 0, 1); // rotate 45 degrees CCW around z// rotate 45 degrees CCW around z--axisaxis

DrawCubeDrawCube();(); // cube is defined centered around origin// cube is defined centered around origin

•• Where will this end up? Where will this end up?
•• Answer: on the xAnswer: on the x--axis, rotated 45 degrees CCW. First image on axis, rotated 45 degrees CCW. First image on

page 107, fig 3page 107, fig 3--4.4.

Remember that the operations are right multiplied, so the transfRemember that the operations are right multiplied, so the transformation ormation
just before just before DrawCubeDrawCube()() takes effect first.takes effect first.

•• You can use You can use gluLookAtgluLookAt(…)(…) (page 119)(page 119) in addition to rotations and in addition to rotations and
translations to affect the viewpoint.translations to affect the viewpoint.

8

OpenGL: Projection Matrix

•• Sets up a perspective projection. Sets up a perspective projection. (page 123)(page 123)

•• A few available options:A few available options:
• glFrustrum (...); // sets up a user defined viewing frustrum

• gluPerspective (fovy, aspect, near, far);
// calculates viewing frustrum for you, given field-of-view in degrees, aspect ratio,
and near and far clipping planes.

• glOrtho (...); // creates orthographic (parallel) projection. Useful for 2D rendering.

•• Example:Example:

glMatrixMode(GL_PROJECTIONglMatrixMode(GL_PROJECTION););
glLoadIdentityglLoadIdentity();();
gluPerspective(64, (gluPerspective(64, (float)windowWidthfloat)windowWidth / (/ (float)windowHeightfloat)windowHeight, 4, 4096);, 4, 4096);

9

GLUT – OpenGL Utility Toolkit (Appendix D)

•• GLUT is a library that handles system events and windowing acrosGLUT is a library that handles system events and windowing across s
multiple platforms, and also provides some nice utilities. We multiple platforms, and also provides some nice utilities. We stronglystrongly
suggest you use it. Find it from the proj3 web page.suggest you use it. Find it from the proj3 web page.

Starting up:Starting up:

intint main (main (intint argcargc, char *, char *argvargv[])[])
{{

glutInit(&argcglutInit(&argc, , argvargv););
glutInitDisplayModeglutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowSizeglutInitWindowSize ((windowWidthwindowWidth, , windowHeightwindowHeight););
glutInitWindowPositionglutInitWindowPosition (0, 0);(0, 0);
glutCreateWindowglutCreateWindow (“248 Video Game!");(“248 Video Game!");

SetStatesSetStates();(); // Initialize any rendering states (your code).// Initialize any rendering states (your code).

RegisterCallbacksRegisterCallbacks(); (); // Set up event callbacks (your code, coming up).// Set up event callbacks (your code, coming up).

glutMainLoopglutMainLoop();(); // Transfer control to GLUT. Doesn’t return.// Transfer control to GLUT. Doesn’t return.

return 0;return 0;
}}

10

Setting Up Rendering States

•• OpenGL is a OpenGL is a statestate machine: polygons are affected by the current machine: polygons are affected by the current
color, transformation, drawing mode, etc.color, transformation, drawing mode, etc.

•• Enable and disable features such as lighting, texturing, and alpEnable and disable features such as lighting, texturing, and alpha ha
blending.blending.

• glEnable (GL_LIGHTING); // enable lighting (disabled by default)

•• Forgetting to enable something is a common source of bugs! Forgetting to enable something is a common source of bugs!
Make sure you enable any features that you need (list of defaulMake sure you enable any features that you need (list of defaults ts
is in Appendix B).is in Appendix B).

11

GLUT Event Callbacks

•• Register functions that are called when certain events occur.Register functions that are called when certain events occur.

Examples:Examples:

glutDisplayFuncglutDisplayFunc(Display);(Display); // called when its time to draw// called when its time to draw

glutKeyboardFuncglutKeyboardFunc(Keyboard);(Keyboard); // receives key input// receives key input

glutReshapeFuncglutReshapeFunc(Reshape);(Reshape); // called when window reshapes// called when window reshapes

glutMouseFuncglutMouseFunc(Mouse);(Mouse); // called when button changes// called when button changes

glutPassiveMotionFuncglutPassiveMotionFunc((PassiveFuncPassiveFunc);); // mouse moves, no buttons// mouse moves, no buttons

glutMotionFuncglutMotionFunc((MouseDraggedFuncMouseDraggedFunc);); // mouse moves, some buttons// mouse moves, some buttons

glutIdleFuncglutIdleFunc(Idle);(Idle); // called whenever idle// called whenever idle

12

OpenGL – Depth Buffer, Double Buffer

•• Buffers store color and depthBuffers store color and depth
• Allows Hidden Surface Removal, so there is proper ordering of objects

in 3D space. This will be discussed later in the course.

•• Double buffering:Double buffering:
• Draw on back buffer while front buffer is being displayed.

• When finished drawing, swap the two, and begin work on the new back
buffer.

• glutSwapBuffers(); // called at the end of rendering

•• Clearing the buffers:Clearing the buffers:

// Clear to this color when screen is cleared.// Clear to this color when screen is cleared.
glClearColorglClearColor (0.0, 0.0, 0.0, 0.0);(0.0, 0.0, 0.0, 0.0);

// Clear color and depth buffers.// Clear color and depth buffers.
glClear(GL_COLOR_BUFFER_BITglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);| GL_DEPTH_BUFFER_BIT);

13

GLUT – Code Demo

14

OpenGL: Normals and Lighting

•• OpenGL can simulate lighting for you, given some information on OpenGL can simulate lighting for you, given some information on
the geometry. Specify vertex the geometry. Specify vertex normalsnormals as you specify geometry.as you specify geometry.

•• Normal vectors should be of unit length (normalized) in most casNormal vectors should be of unit length (normalized) in most cases.es.

// each vertex has a different normal here// each vertex has a different normal here
glColor3f (0.8, 1.0, 0.5);glColor3f (0.8, 1.0, 0.5);
glBegin(GL_TRIANGLESglBegin(GL_TRIANGLES););

glNormal3fv (n0);glNormal3fv (n0);
glVertex3fv (v0);glVertex3fv (v0);
glNormal3fv (n1);glNormal3fv (n1);
glVertex3fv (v1);glVertex3fv (v1);
glNormal3fv (n2);glNormal3fv (n2);
glVertex3fv (v2);glVertex3fv (v2);

glEndglEnd();();

// all vertices have the same normal here// all vertices have the same normal here
glBegin(GL_TRIANGLESglBegin(GL_TRIANGLES););

glNormal3fv (n0);glNormal3fv (n0);
glVertex3fv (v0);glVertex3fv (v0);
glVertex3fv (v1);glVertex3fv (v1);
glVertex3fv (v2);glVertex3fv (v2);

glEndglEnd();();

15

OpenGL: Lighting (Ch.5 p.173)

•• glEnableglEnable (GL_LIGHTING);(GL_LIGHTING);

•• OpenGL supports a minimum of 8 lights.OpenGL supports a minimum of 8 lights.
• glEnable (GL_LIGHT0);

...

glEnable (GL_LIGHT7);

•• Lights have a position, type, and color, among other things.Lights have a position, type, and color, among other things.

•• Position:Position:
• float light0Position[4] = {1.0, 0.0, 4.0, 1.0};

glLightfv (GL_LIGHT0, GL_POSITION, light0Position);

•• Types of lights are point light, directional light, and spotlighTypes of lights are point light, directional light, and spotlight. The fourth t. The fourth
component of position (1.0 above) determines the type. 0 is for component of position (1.0 above) determines the type. 0 is for
directional lights, 1 is for point/spot lights. directional lights, 1 is for point/spot lights. (page 187)(page 187)

•• Color has a few components: Ambient, Diffuse, Color has a few components: Ambient, Diffuse, SpecularSpecular..
Read about them in the text.Read about them in the text.

16

OpenGL: Lighting (cont.)

•• OpenGL supports 2 basic shading models: flat and smooth.OpenGL supports 2 basic shading models: flat and smooth.
• glShadeModel(GL_FLAT); glShadeModel(GL_SMOOTH);

•• Lighting calculations can be expensive, so investigate other optLighting calculations can be expensive, so investigate other options (ions (ieie
lightmapslightmaps) if needed.) if needed.

17

OpenGL: Material Properties (Ch.5)

•• You can specify different material properties for different You can specify different material properties for different
polygons, changing the effect of lights.polygons, changing the effect of lights.
• Use glMaterial*(GLenum face, GLenum pname, TYPE param);

•• Some properties Some properties ((pnamepname), page 202:), page 202:

• GL_AMBIENT: Ambient color of material

• GL_DIFFUSE: Diffuse color of material

• GL_SPECULAR: Specular component (for highlights)

• GL_SHININESS: Specular exponent (intensity of highlight)

•• Color plate 17 in the book shows a few examples.Color plate 17 in the book shows a few examples.

18

OpenGL: Texturing

19

OpenGL: Texturing

20

OpenGL: Texturing

21

OpenGL: Texturing

22

OpenGL: Texturing

•• Loading your dataLoading your data
• this can come from an image: ppm, tiff

• create at run time

• final result is always an array

•• Setting texture stateSetting texture state
• creating texture names, scaling the image/data,

building Mipmaps, setting filters, etc.

•• Mapping the texture to the polygonMapping the texture to the polygon
• specify s,t coordinates for polygon vertices

23

OpenGL: Texturing

•• Loading your dataLoading your data
• this can come from an image: ppm, tiff

• libtiff, libppm, etc.
• remember the ordering of color channels and bits per

channel! ie: RGBA, or AGBR, 32 bits or 8 bits?
• You can tell OpenGL how to read your data by

setting certain texture state (see next slide)

• create at run time

• procedural textures, 3D textures, adding specular
highlights

• final result is always an array

24

OpenGL: Texturing

•• Setting texture stateSetting texture state
• create texture names

• glGenTextures(int num, int* texNames)

• glBindTexture(GL_TEXTURE_2D, texName);

• Tell OpenGL how to read your array
• glPixelStorei(GL_UNPACK_SWAP_BYTES, int num);

• glPixelStorei(GL_UNPACK_ALIGNMENT, int num);

• Scale your array to be 2n+2(b), b = {0,1} if you have
a border or not
• gluScaleImage(GL_RGBA, w0, h0, GL_UNSIGNED_BYTE, img, w1, h1,
GL_UNSIGNED_BYTE, imgScaled)

• gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGBA, w0, h0, GL_RGBA,
GL_UNSIGNED_BYTE, img);

25

OpenGL: Texturing

•• Setting texture state (cont)Setting texture state (cont)
• Tell OpenGL what to do when the s,t values are not

within [0,1]x[0,1] range.
• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

• GL_CLAMP: any values larger than 1.0 are clamped
to 1.0

• GL_REPEAT: wrap larger values to the beginning of
the texture (see OpenGL book, pg 411)

• Set the filters for minification/magnification
• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

• other parameters: GL_LINEAR, other mipmap
options

26

OpenGL: Texturing

•• Setting texture state (cont)Setting texture state (cont)
• Tell OpenGL about your data array (image, etc.)

• glTexImage2D(GL_TEXTURE_2D, int lod, int num_components, width,
height, border, format_of_data_pixel, size_of_each_channel,
img_array)

• If you used to gluBuild2DMipmaps scale your image and
create a multi-resolution pyramid of textures, then
you do NOT need to use glTexImage2D. The
gluBuild2DMipmaps command will already tell OpenGL
about your array.

27

OpenGL: Texturing

•• Mapping the texture to the polygonMapping the texture to the polygon
• specify (s,t) texture coordinates for (x,y,z) polygon

vertices

• texture coordinates (s,t) are from 0,1:

s

t

0,0

1,1

0,0

1,1

(x0,y0,z0)

(x1,y1,z1)

1,0

0,1

(x2,y2,z2)

(x3,y3,z3)

• glTexCoord2f(s,t);

+

28

OpenGL: Texturing

•• Let’s look at code!Let’s look at code!

29

OpenGL: Texturing

•• Advanced Texture techniquesAdvanced Texture techniques
• Multitextures

• automatic texture generation

• Let OpenGL determine texture coordinates for you

• Environment Mapping

• Texture matrix stack

30

OpenGL: Alpha Blending

•• When enabled, OpenGL uses the alpha When enabled, OpenGL uses the alpha
channel to blend a new fragment’s color value channel to blend a new fragment’s color value
with a color in the with a color in the framebufferframebuffer

New color Color in framebuffer

+ =

?
(r1,g1,b1,a1) (r0,g0,b0,a0)

(r’,g’,b’,a’)

r’ = a1*r1 + (1-a1)*r0

“source” “destination”

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ZERO);
…draw green square …
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
…draw brown square with alpha = 0.5…

31

OpenGL: Alpha Blending AND Textures

•• Alpha blending with multiple texturesAlpha blending with multiple textures
• one way to do multi-pass rendering

• number of “texture passes” over a polygon is
independent of the maximum number of multi-
texture units on the graphics card

• GeForce 2 has only 2 texture units!

• slower because geometry is sent n times to the card
for n texture passes

• demo and code if you want to see it

32

Development

•• On Windows:On Windows:
• Download the GLUT libraries (linked off the proj3 webpage).

• You want to link your project with: opengl32.lib, glut32.lib, and glu32.lib.
This is under Project->Settings->Link in MS Visual Studio.

•• On Linux:On Linux:
• GLUT is already installed on the graphics lab PCs.

• In your Makefile, compile with flags: -L/usr/lib -lGL -lGLU –lglut

•• Call Call glutReportErrorsglutReportErrors() once each display loop for debugging.() once each display loop for debugging.
• This will report any errors that may have occurred during rendering, such as an

illegal operation in a glBegin/glEnd pair.

33

Questions?

